header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

IPOD-BASED NAVIGATION IN TKR AND THR – FIRST EXPERIENCE AND RESULTS OF THE PILOTSTUDY

The International Society for Computer Assisted Orthopaedic Surgery (CAOS)



Abstract

In order to enhance the acceptance of computer assisted surgery in joint replacement, a development-cooperation with BrainLAB, Germany was set up to develop a user-friendly handheld navigation device. A sterile draped Apple® IPod-Touch which is placed into a hardcover cradle, is used as navigation monitor and touchscreen control. Different instruments, such as navigation-pointer are attached to the cradle. In addition the workflows for TKR and THR procedures have been optimised. Therefore the main focus for TKR is navigation of femoral and tibial resection as well as leg alignment control. For the THR the system enables an intraoperative control of leg-length and femoral-offset measurement in comparison with the preoperative situation. Each step of the procedure is supported by video animations of the specific navigation workflow.

Between September and December 2010 the first clinical study on the usability in TKR and THR was performed for 20 cases using a prototype system. The study was approved by the local ethic committee and the “German Federal Institute for Drugs and Medical Devices (BfArM)”. Special interest was taken to the aspects of usability and the necessary time periods for specific steps of the procedure. Usability was measured for specific time periods of the procedure assessment of the usability of the surgical team. In addition postoperative x-rays were evaluated for implant position, leg alignment for TKR and hip joint geometry for THR cases.

Throughout the study for each assigned patient the procedure could be performed as planned. Several design inputs were identified for further improvement of the final system. Therefore time measurements of the first five cases were excluded.

For the TKR cases the registration process of the last 5 cases was less than 3 minutes. The interval for the tibial resection was between 3 and 7 minutes (aligning tibial cutting block – end of tibial verification). The interval for the distal femur resection was between 7 and 11 minutes (aligning femoral cutting block – end of femoral verification). All 10 Patients showed a final leg alignment on the postoperative standing x-ray within the save-zone of +/− 3° from neutral alignment. For the THR cases the preoperative registration period including the femoral head resection and acetabular registration was between 7 and 12 Minutes. Each final measurement of the hip geometry was done in less than 2 minutes. The evaluation of the pelvic ap-x-ray pre- and postoperative showed equivalent measurements of the new hip geometry compared with the intraoperative measured values. No specific complications occurred throughout the study.

In conclusion the BrainLAB–DASH-System has shown a high grade of usability and very short learning curve within this first clinical study. The use of a standard Apple® IPod-touch as a user interface seems to enhance the acceptance of the navigation technique. Equivalent precision compared to standard navigation systems have been demonstrated.