header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

HEELS-DOWN SQUATTING AFTER TOTAL HIP ARTHROPLASTY

The International Society for Computer Assisted Orthopaedic Surgery (CAOS)



Abstract

The in vivo kinematics of squatting after total hip arthroplasty (THA) has remained unclear. The purpose of the present study was to elucidate range of motion (ROM) of the hip joint and the incidence of prosthetic impingement during heels-down squatting after THA.

23 primary cementless THAs using a computed tomography-based navigation system (CT-HIP, Stryker Navigation, Freiberg, Germany) were investigated using fluoroscopy. An acetabular component with concavities around the rim (TriAD HA PSL, Stryker Orthopaedics, Mahwah, NJ) and a femoral component with reduced neck geometry (CentPiller, Stryker Orthopaedics), which provided a large oscillation angle, were used. The femoral head size was 28mm (8 hips), 32mm (10 hips), and 36mm (5 hips). Post-operative analysis was performed within 6 months in 6 hips, and at 6 months to 2 years in 17 hips. Successive hip motion during heels-down squatting was recorded as serial digital radiographic images in a DICOM format using a flat panel detector. The coordinate system of the acetabular and femoral components based on the neutral standing position was defined. The images of the hip joint were matched to three-dimensional computer aided design models of the acetabular and femoral components using a two-dimensional to three-dimensional (2D/3D) registration technique. In the previous computer simulation study of THA, the root mean square errors of rotation was less than 1.3°, and that of translation was less than 2.3 mm.

We estimated changes in the relative angle of the femoral component to the acetabular component, which represented the hip ROM, and investigated the incidence of prosthetic impingement during squatting. We also estimated changes in the flexion angle of the acetabular component, which represented the pelvic posterior tilting angle (PA), and the flexion angle of the femoral component, which represented the femoral flexion angle (FA). The contribution of the PA to the FA at maximum squatting was evaluated as the pelvic posterior tilting ratio (PA/FA). In addition, when both components were positioned most closely during squatting, we estimated the minimum angle (MA) up to theoretical prosthetic impingement.

No prosthetic impingement occurred in any hips. The maximum hip flexion ROM was mean 92.7° (SD; 15.7°, range; 55.1°–119.1°) and was not always consisted with the maximum squatting. The maximum pelvic posterior tilting angle (PA) was mean 27.3° (SD; 11.0°, range; 5.5°–46.5°). The pelvis began to tilt posteriorly at 50°–70° of the hip flexion ROM. The maximum femoral flexion angle (FA) was mean 118.9° (SD; 10.4°, range; 86.4°–136.7°). At the maximum squatting, the ratio of the pelvic posterior tilting angle to the femoral flexion angle (pelvic posterior tilting ratio, PA/FA) was mean 22.9% (SD; 10.4%, range; 3.8%–45.7%). The minimum angle up to the theoretical prosthetic impingement was mean 22.7° (SD; 7.5°, range; 10.0°–37.9°). The maximum hip flexion of ROM in 36 mm head cases was larger than that in 32 mm or 28 mm head cases, while the minimum angle up to the prosthetic impingement in 36 mm head cases was also larger than that in 32 mm or 28 mm head cases.

Three-dimensional assessment of dynamic squatting motion after THA using the 2D/3D registration technique enabled us to elucidate hip ROM, and to assess the prosthetic impingement, the contribution of the pelvic posterior tilting, and the minimum angle up to theoretical prosthetic impingement during squatting.