header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ASSESSMENT OF ACCURACY OF ROBOTICALLY ASSISTED UNICOMPARTMENTAL ARTHROPLASTY (MAKOPLASTY)

The International Society for Computer Assisted Orthopaedic Surgery (CAOS)



Abstract

The knee is one of the most commonly affected joints in osteoarthritis. Unicompartmental knee replacement (UKA) was developed to address patients with this disease in only one compartment. The conventional knee arthroplasty jigs, while usually being accurate, may result in the prosthesis being inserted in an undesired alignment which may lead to poor post-operative outcomes. Common modes of failure in UKA include edge loading due to incorrect sizing or positioning, development of disease in the other compartment due to over-stuffing or over-correction and early loosening or stress fractures due to inaccurate bone cuts.

Computer navigation and robotically assisted unicompartmental knee replacement were introduced in order to improve the surgical accuracy of both the femoral and tibial bone cuts. The aim of this study was to assess accuracy and reliability of robotic assisted, unicondylar knee surgery in producing reported bony alignment.

Two hundred and twenty consecutive patients with a mean age of 64 + 11 years who underwent successful medial robotic assisted unicondylar knee surgery performed by two senior total joint arthroplasty surgeons were identified retrospectively. The mean body mass index of the cohort was 33.5 + 8 kg/m2 with a minimum follow-up of 6 months (range: 6–18 months). Femoral and tibial sagittal and coronal alignments as well as the posterior slope of the tibial component were measured in the post-operative radiographs. These measurements were compared with the equivalent measurements collected during intra-operative period by the navigation to study the reliability and accuracy of femoral and tibial cuts. Radiographic evaluation was independently conducted by two observers.

There was an average difference of 2.2 to 3.6 degrees between the intra-operatively planned and post-operative radiological equivalent measurements. For the femur, mean varus/valgus angulation was 2.8 + 2.5 degrees with 83% of those measured within 5% of planned. For the tibia mean varus/valgus angulation was 2.4 + 1.9 degrees with 93% within 5% of planned resection. There was minimal inter-observer variability between radiographic measurements. There were no infections in the evaluated group at the time of radiographic examination.

Alignment for unicondylar knee arthroplasty is important for implant survival and is a more difficult procedure to instrument as it is a minimally invasive surgery. Assuming appropriate planning, robotically assisted surgery in unicondylar knee replacement will result in reliably accurate positioning of component and reduce early component failures caused by malpositioning. A mismatch between pre-planning and post-operative radiography is often caused by poor cementing technique of the prosthesis rather than incorrect bony cuts. Addressing these factors can lead to greater success and improved outcomes for patients.