header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Foot & Ankle

MINIMALLY INVASIVE FOREFOOT SURGERY - A CADAVERIC STUDY

British Orthopaedic Foot & Ankle Society (BOFAS)



Abstract

MIS (minimally invasive surgery) aims to improve cosmesis and facilitate early recovery by using a small skin incision with minimal soft tissue disruption. When using MIS in the forefoot, there is concern about neurovascular and tendon damage and cutaneous burns. The aim of this anatomical study was to identify the structures at risk with the proposed MIS techniques and to determine the frequency of iatrogenic injury.

Materials and Methods

10 paired normal cadaver feet were used. All procedures were performed using a mini C-arm in a cadaveric lab by 2 surgeons: 1 consultant who has attended a cadaveric MIS course but does not perform MIS in his regular practice (8 feet), and 1 registrar who was supervised by the same consultant (2 feet). In each foot, the surgeon performed a lateral release, a MICA (minimally invasive chevron and Akin) procedure for the correction of hallux valgus, and a minimally invasive DMO (distal metatarsal extra-articular osteotomy) procedure. Each foot was then dissected and photographed to identify any neurovascular or tendon injury.

Results

The dorsal medial cutaneous and the plantar interdigital nerves were intact in all specimens. There was no obvious damage to the arterial plexus supplying the first metatarsal head. No flexor or extensor tendon injuries were identified. There is a significant learning curve to performing the osteotomy cuts in the desired plane. In the DMO, the dissection also revealed some intact soft tissue at the osteotomy site indicating that the metatarsal heads were not truly floating.

Discussion

Although there has been concern regarding neurovascular and tendon injury, our findings indicate minimal risk, which is consistent with reports in the literature. This study also reflects the learning curve.

Conclusion

We suggest that training on cadaveric specimens may be advantageous, particularly, with regard to the plane of the osteotomy.