header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

The Effect of Mal-Aligned Conditions on Shear Forces on Patellar Components

The International Society for Technology in Arthroplasty (ISTA)



Abstract

INTRODUCTION

Wear and fracture of patellar components has been frequently reported as a failure mode for cemented and press-fit patellar components. Malalignment of the patellar components may cause higher contact stresses, which may lead to excessive wear, delamination, and/or component fracture. In vitro testing of the patella in a clinically relevant malaligned condition is necessary to demonstrate adequate performance of the patellar component and assess the endurance of its fixation features under severe loading conditions. The purpose of this study was to test in vitro the patellar components under malaligned conditions using a knee joint simulator.

MATERIALS AND METHODS

A 6 station MTS (Eden Prairie, MN) knee joint wear simulator and Alpha Calf Fraction serum (Hyclone Labs, Logan, UT) diluted to 50% with a pH-balanced 20-mMole solution of deionized water and EDTA was used (protein level = 20 g/l) for testing. Asymmetric, all-polyethylene, patellar components with an overall construct thickness of 11 mm (Duracon®, Stryker Orthopaedics, Mahwah, NJ) were used. Appropriately sized cobalt-chrome femoral components articulated against the patellae.

The patellae were cemented (Simplex, Stryker Orthopaedics, Mahwah, NJ) to delrin fixtures, which placed the patella in 10° of lateral tilt (Figure 1). This angle was chosen based off the work of Huang et al, which was one of the larger average tilt angles reported in vivo. Replicating this scenario in vitro allows for observation of the potential scenario that may occur as the femoral component maintains contact strictly on the thinner lateral edge of the patella, concentrating both the axial and shear loads on a small area of polyethylene.

The loading and kinematic profiles used for testing were published previously (maximum axial load: 2450N and maximum patellofemoral angle: 54°. Variations of the loading profile were studied by evaluating the effects of heavier patients, which increased the maximum axial load to 3100N(250lb patient) and 3750N(300lb patient) (Figure 2). Lateral offset was tested to evaluate the effect of malalignment. Increments of 1mm were analyzed starting from the neutral position, eventually reaching a maximum lateral offset of 5mm.

A 6-dof load cell was placed beneath the patella fixturing to capture dynamic loads (ATI, Apex, NC). The axial and medial/lateral shear loads where used to calculate the resultant medial/lateral shear force being applied to the patellar pegs.

RESULTS

The results of using a heavier loading profile and increasing lateral offset are shown in Figure 3. At neutral alignment, the effect of increasing the axial load caused an increase of 10% in resultant shear force. At 5 mm of lateral offset, the increase in loading caused the shear force to increase by 16%. With each loading profile, increasing the lateral offset from 0 to 5 mm caused the resultant shear force to increase two-fold.

DISCUSSION

This test model allows for an aggressive method of testing patellar implants and it includes variables to adjust for severity (lateral offset and joint reaction force). Although increasing the amount of lateral patellar offset increases the resultant shear forces, the patellar wear rates remained minimal and constant. Hence, a femoral component that has a forgiving patellar tracking may demonstrate minimal wear, even when evaluated in extremely aggressive test conditions. Note: These results are specific to the device used since the results will be dependant on the function and design of the patellar implant and patella/femur track.


∗Email: aaron.essner@stryker.com