header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Knee

PROFILE OF THE DISTAL FEMORAL CORTEX - A COMPUTER AIDED, CADAVERIC STUDY

British Association for Surgery of the Knee (BASK)



Abstract

Purpose

To evaluate the normal bony profiles of the anterior surface of the distal femoral cortex, its relation to the posterior condylar plane and assess the implications of these findings to anterior femoral referencing.

Methods and Results

Fifty well preserved adult, cadaveric femora were studied. Different points on the proximal and distal femur were recorded using an optoelectronic system based around a commercial navigation system. Definitions were: anterior femoral plane (AFP) derived from nine points on the anterior cortex of the distal femur; posterior condylar plane (PCP) as the plane parallel to the sagittal mechanical axis of the femur and containing the PCA. The anterior femoral cortex was divided into lateral, median and medial areas. Average heights of each of these areas from the PCP were calculated, as were the angles between the PCP and AFP.

Four distinct anterior cortex profiles were seen. In 28 specimens the lateral side had the highest mean height and the medial side had the lowest mean height (Group 1). For 13 specimens the lowest mean height was in the median area (Group 2) but 7 specimens had highest mean height here (Group 3). Only 2 specimens had the highest mean height on the medial side with the lowest mean height on the lateral side (Group 4). The average angle between the AFP and the PCP was 1.3° of external rotation. In Group 1 the AFP angle was more internally rotated (-10° to -2°) compared to the other groups, in particular Group 4 which showed the most external rotation (3° and 4°).

Conclusions

Anterior referencing in TKA needs to represent the actual anterior shape of the distal femur cortex to prevent femur notching, femoro-patellar overstuffing or flexion gap mismanagement.