header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

EARLY FAILURE OF KINEMAX PLUS TOTAL KNEE REPLACEMENTS

British Orthopaedic Association (BOA) 2007



Abstract

During a retrospective case note analysis, a significant difference was found in prosthesis survival, between two cohorts of patients who underwent different total knee replacements. The first cohort included 70 patients who underwent Kinemax Plus total knee replacement, the second cohort included 58 patients who underwent PFC Total Knee replacement. All patients were under the care of one Consultant Orthopaedic Surgeon. Interestingly, the Kinemax Plus cohort was found to have a higher rate of revision compared to the PFC cohort. A detailed comparison was carried out between the two groups to identify any obvious cause for the disparity.

The two cohorts were found to be well matched with respect to age, sex, ASA grade, underlying pathology and operative technique. Median follow up being 6 years and 5 years for the Kinemax Plus and PFC groups respectively.

There were 11 failed prostheses in the Kinemax Plus cohort, 7 undergoing revision with the remaining 4 patients offered revision but unwilling to have surgery. Wear of the polyethylene tibial insert was the most obvious finding at revision, present in six of the seven revisions. 97% of the Kinemax Plus Prostheses were intact at 5 years but by 8 years only 87% were intact. There were no revisions performed in the PFC cohort.

Post-operative x-ray analysis was undertaken to rule out prosthesis malalignment as a cause for the increased failure rate. The coronal alignment of the prostheses (CAK) was calculated and all post operative x-rays were within the normal limits of 4-10 degrees.

Analysis of the explanted Kinemax Plus polyethylene liners was undertaken. In six cases, the polyethylene bearing surfaces displayed severe surface and subsurface delamination. This suggests massive fatigue and fatigue wear. Only one implant showed localised delamination.

These findings suggest the hypothesis of weak polyethylene particle interface strength.