header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

PATHOGENETIC PATHWAYS AND POSSIBLE TREATMENT OPTIONS FOR NONUNION FRACTURES

The European Orthopaedic Research Society (EORS) 31st Annual Meeting, Porto, Portugal, 27–29 September 2023. Part 2 of 2.



Abstract

Bone regeneration is pivotal for the healing of fractures. In case this process is disturbed a non-union can occur. This can be induced by environmental factors such as smoking, overloading etc. Co-morbidities such as diabetes, osteoporosis etc. may be more intrinsic factors besides other disturbances in the process. Those pathways negatively influence the bone regeneration process. Several intrinsic signal transduction pathways (WNT, BMP etc.) can be affected. Furthermore, on the transcriptional level, important mRNA expression can be obstructed by deregulated miRNA levels. For instance, several miRNAs have been shown to be upregulated during osteoporotic fractures. They are detrimental for osteogenesis as they block bone formation and accelerate bone resorption. Modulating those miRNAs may revert the physiological homeostasis. Indeed, physiological fracture healing has a typical miRNA signature. Besides using molecular pathways for possible treatment of non-union fractures, providing osteogenic cells is another solution. In 5 clinical cases with non-union fractures with defects larger than 10 cm, successful administration of a 3D printed PCL-TCP scaffold with autologous bone marrow aspirate concentrate and a modulator of the pathogenetic pathway has been achieved. All patients recovered well and showed a complete union of their fractures within one year after start of the regenerative treatment.

Thus, non-union fractures are a diverse entity. Nevertheless, there seem to be common pathogenetic disturbances. Those can be counteracted at several levels from molecular to cell. Compositions of those may be the best option for future therapies. They can also be used in a more personalized fashion in case more specific measurements such as miRNA signature and stem cell activity are applied.


Email: