header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

3D BIOPRINTING TISSUE-ENGINEERED MENISCAL CONSTRUCTS

The European Orthopaedic Research Society (EORS) 31st Annual Meeting, Porto, Portugal, 27–29 September 2023. Part 1 of 2.



Abstract

Meniscal injuries affect over 1.5 million people across Europe and the USA annually. Injury greatly reduces knee joint mobility and quality of life and frequently leads to the development of osteoarthritis. Tissue engineered strategies have emerged in response to a lack of viable treatments for meniscal pathologies. However, to date, constructs mimicking the structural and functional organisation of native tissue, whilst promoting deposition of new extracellular matrix, remains a bottleneck in meniscal repair. 3D bioprinting allows for deposition and patterning of biological materials with high spatial resolution. This project aims to develop a biomimetic 3D bioprinted meniscal substitute.

Meniscal tissue was characterised to effectively inform the design of biomaterials for bioprinting constructs with appropriate structural and functional properties. Histology, gene expression and mass spectrometry were performed on native tissue to investigate tissue architecture, matrix components, cell populations and protein expression regionally across the meniscus. 3D laser scanning and magnetic resonance imaging were employed to acquire the external geometrical information prior to fabrication of a 3D printed meniscus. Bioink suitability was investigated through regional meniscal cell encapsulation in blended hydrogels, with the incorporation of growth factors and assessed for their suitability through rheology, scanning electron microscopy, histology and gene expression analysis.

Meniscal tissue characterisation revealed regional variations in matrix compositions, cellular populations and protein expression. The process of imaging through to 3D printing highlighted the capability of producing a construct that accurately replicated meniscal geometries. Regional meniscal cell encapsulation into hydrogels revealed a recovery in cell phenotype, with the incorporation of growth factors into the bioink's stimulating cellular re-differentiation and improved zonal functionality.

Meniscus biofabrication highlights the potential to print patient specific, customisable meniscal implants. Achieving zonally distinct variations in cell and matrix deposition highlights the ability to fabricate a highly complex tissue engineered construct.

Acknowledgements: This work was undertaken as part of the UK Research and Innovation (UKRI)-funded CDT in Advanced Biomedical Materials.


Email: