header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

CYTOLOGICAL EFFECT OF SERUM ISOLATED FROM POLYTRAUMATIZED PATIENTS ON HUMAN BONE MARROW-DERIVED MESENCHYMAL STROMAL CELLS

The International Combined Orthopaedic Research Societies (ICORS), World Congress of Orthopaedic Research, Edinburgh, Scotland, 7–9 September 2022. Part 1 of 3.



Abstract

Due to their immunomodulatory and regenerative capacity, human bone marrow-derived mesenchymal stromal cells (hBMSCs) are promising in the treatment of polytrauma patients. However, few studies evaluated the effects of sera from polytraumatized patients on hBMSCs. The aim of this study was to explore changes in hBMSCs exposed to serum from polytrauma patients from different time points after trauma.

Sera from 84 patients on day 1 (D1), 5 (D5) and 10 (D10) after polytrauma (ISS ≥ 16) were pooled respectively to test the differential influence on hBMSC. As a control, sera from three healthy age- and gender-matched donors (HS) were collected. The pooled sera were analyzed by Multicytokine Array for pro-/anti-inflammatory cytokines. For the cell culture experiments, hBMSCs from four healthy donors were used. The influence of the different sera on hBMSC regarding cell proliferation, colony forming unit-fibroblast (CFU-F) assay, cell viability and toxicity, cell migration, as well as osteogenic and chondrogenic differentiation was analyzed. One-Way-ANOVA and LSD-test were used for the parametric, Kruskal-Wallis-test for non-parametric data. p≤0.05 was considered as statistically significant.

The results showed that D5 serum reduced hBMSCs cell proliferation capacity by 41.26% (p=0.000) compared with HS and increased the proportion of dead cells by 3.19% (p=0.008) and 2.25% (p=0.020) compared with D1 and D10. The frequency of CFU-F was reduced by 49.08% (p=0.041) in D5 and 53.99% (p=0.027) in D10 compared with HS, whereas the other parameters were not influenced.

The serological effect of polytrauma on hBMSCs was related to the time after trauma. It is disadvantageous to use BMSCs in polytraumatized patients five days after the incidence as obvious cytological changes could be found at that time point. However, it is promising to use hBMSCs to treat polytrauma after 10 days, combined with the concept of “Damage Control Orthopaedics” (DCO).


Email: