header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Knee

NOVEL ROBOTIC TECHNIQUE TO INVESTIGATE TOTAL KNEE ARTHROPLASTY STABILITY

The British Association for Surgery of the Knee (BASK) May 2023 Meeting, London, England, 16–17 May 2023.



Abstract

Abstract

Introduction

Mid-flexion instability may cause poor outcomes following TKA. Surgical technique, patient-specific factors, and implant design could all contribute to it, with modelling and fluoroscopy data suggesting the latter may be the root cause. However, current implants all pass the preclinical stability testing standards, making it difficult to understand the effects of implant design on instability. We hypothesized that a more physiological test, analysing functional stability across the range of knee flexion-extension, could delineate the effects of design, independent of surgical technique and patient-specific factors.

Methods

Using a SIMvitro-controlled six-degree-of-freedom robot, a dynamic stability test was developed, including continuous flexion and reporting data in a trans-epicondylar axis system. 3 femoral geometries were tested: gradually reducing radius, multi-radius and single-radius, with their respective tibial inserts. 710N of compression force (body weight) was applied to the implants as they were flexed from 0–140° with three levels of anterior/posterior (AP) tibial force applied (−90N,0N,90N).

Results

While in static tests, the implants performed similarly, functional stability testing revealed different paths of motion and AP laxities throughout the flexion cycle. Some designs exhibited mid-flexion instability, while others did not: the multi-radius design allowed increased AP laxity as it transitioned to each arc of reduced femoral component radius; the single-radius design had low tibial bearing conformity, allowing 16mm difference in the paths of mid-flexion versus extension motion.

Conclusions

Preclinical lab testing reveals functional differences between different design philosophies. Implant design impacts kinematics and mid-flexion stability, even before factoring in surgical technique and patient-specific factors.