header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Knee

TRAINING AND VALIDITY OF THE MICROSOFT HOLOLENS, AN AUGMENTED REALITY DEVICE, FOR TOTAL KNEE ARTHROPLASTY: A DOUBLE-BLINDED RANDOMIZED CONTROLLED TRIAL

The British Association for Surgery of the Knee (BASK) May 2023 Meeting, London, England, 16–17 May 2023.



Abstract

Abstract

Introduction

Challenges in surgical training have led to the exploration of technologies such as augmented reality (AR), which present novel approaches to teaching orthopaedic procedures to medical students. The aim of this double-blinded randomised-controlled trial was to compare the validity and training effect of AR to traditional teaching on medical students’ understanding of total knee arthroplasty (TKA).

Methodology

Twenty medical students from 7 UK universities were randomised equally to either intervention or control groups. The control received a consultant-led teaching session and the intervention received training via Microsoft HoloLens, where surgeons were able to project virtual information over physical objects. Participants completed written knowledge and practical exams which were assessed by 2 orthopaedic consultants. Training superiority was established via 4 quantitative outcome measures: OSATS scores, a checklist of TKA-specific steps, procedural time, and written exam scores. Qualitative feedback was evaluated using a 5-point Likert scale.

Results

AR training was superior in teaching basic technical proficiency and understanding of TKA, with the intervention group significantly outperforming the control group in 3 metrics [OSATS (38.6%, p=0.021), checklist (33%, p=0.011) and written exam (54.5%, p=0.001)]. Procedural time was equivalent between cohorts (p=0.082). AR was rated as significantly more enjoyable (p=0.044), realistic (p=0.003), easy to understand (p=0.040), and proficient in teaching (p=0.02).

Conclusion

In this adequately powered, double-blinded randomised-controlled trial, AR training demonstrated substantially improved translational technical skills and knowledge needed to understand TKA over traditional learning in medical students. Additionally, the results showed face, content, and transfer validity for AR in surgical training.