header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Hip

VIRTUAL BIOMECHANICAL ASSESSMENT OF CUSTOM TRIFLANGE AND TRABECULAR METAL COMPONENTS TO TREAT LARGE ACETABULAR DEFECTS

The International Hip Society (IHS) Closed Meeting 2023, Boston, MA, USA, 17–20 May 2023.



Abstract

The best treatment method of large acetabular bone defects at revision THR remains controversial. Some of the factors that need consideration are the amount of residual pelvic bone removed during revision; the contact area between the residual pelvic bone and the new implant; and the influence of the new acetabular construct on the centre of rotation of the hip. The purpose of this study was to compare these variables in two of the most used surgical techniques used to reconstruct severe acetabular defects: the trabecular metal acetabular revision system (TMARS) and a custom triflanged acetabular component (CTAC).

Pre- and post-operative CT-scans were acquired from 11 patients who underwent revision THR with a TMARS construct for a Paprosky IIIB defect, 10 with pelvic discontinuity, at Royal Adelaide Hospital. The CT scans were used to generate computer models to virtually compare the TMARS and CTAC constructs using a semi-automated method. The TMARS construct model was calculated using postoperative CT scans while the CTAC constructs using the preoperative CT scans. The bone contact, centre of rotation, inclination, anteversion and reamed bone differences were calculated for both models.

There was a significant difference in the mean amount of bone reamed for the TMARS reconstructions (15,997 mm3) compared to the CTAC reconstructions (2292 mm3, p>0.01). There was no significant difference between overall implant bone contact (TMARS 5760mm2 vs CTAC 5447mm2, p=0.63). However, there was a significant difference for both cancellous (TMARS 4966mm2 vs CTAC 2887mm2, p=0.008) and cortical bone contact (TMARS 795mm2 vs CTAC 2560mm2, p=0.001). There was no difference in inclination and anteversion achieved. TMARS constructs resulted on average in a centre of rotations 7.4mm more lateral and 4.0mm more posterior.

Modelling of two different reconstructions of Paprosky IIIB defects demonstrated potential important differences between all variables investigated.


Email: