header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

SECRETOME FROM MESENCHYMAL STROMAL CELLS FOR JOINT DISORDERS: IDENTIFICATION OF SECRET FACTORS AND THERAPEUTIC MICRORNA IN EXTRACELLULAR VESICLES

The Italian Orthopaedic Research Society (IORS) Meeting, Bologna, Italy, 10–11 June 2022.



Abstract

In the context of regenerative medicine for the treatment of musculoskeletal pathologies mesenchymal stromal cells (MSCs) have shown good results thanks to secretion of therapeutic factors, both free and conveyed within the extracellular vesicles (EV), which in their totality constitute the “secretome”. The portfolio and biological activity of these molecules can be modulated by both in vitro and in vivo conditions, thus making the analysis of these activities very complex. A deep knowledge of the targets regulated by the secretome has become a matter of fundamental importance and a homogeneous and complete molecular characterization is still lacking in the field of applications for the musculoskeletal system. Therefore, the aim of this work was to characterize the secretome obtained from adipose-derived MSCs (ASCs), and its modulation after pre-conditioning of the ASCs. Pre-conditioning was done by culturing cells in the presence of i) high levels of IFNγ, as proposed for the production of clinical grade secretome with enhanced regenerative potential, ii) low levels of inflammatory stimuli, mimicking conditions found in the osteoarthritis (OA) synovial fluid. Furthermore, EVs ability to migrate within cartilage, chondrocyte and synoviocytes obtained from OA patients was evaluated.

The data showed that more than 50 cytokines / chemokines and more than 200 EV-microRNAs are detectable at various intensity levels in ASCs secretomes. The majority of the most abundantly present molecules are involved in the remodelling of the extracellular matrix and in the homeostasis and chemotaxis of inflammatory cells including macrophages, which in OA are often characterized by an M1 inflammatory polarization, promoting their transition to an M2 anti-inflammatory phenotype. Inflammatory priming with IFNγ and synovial fluid-like conditions were able to further increase the ability of the secretome to interact with inflammatory cells and modulate their migration. Finally, the penetration of the EVs in the cartilage explants resulted a rapid process, which begins a few minutes after administration of the EVs that are able to reach a depth of 30-40 μm in 5 hours. The same capacity for interaction was also verified in chondrocytes and synoviocytes isolated from the cartilage and synovial membrane of OA patients.

Thanks to the soluble factors and EV-microRNAs, the ASCs secretome has shown a strong propensity to modulate the inflammatory and degenerative processes that characterize OA. The inflammatory pre-conditioning through high concentrations of inflammatory molecules or in conditions similar to the synovial fluid of OA patients was able to increase this capacity by increasing their chemotactic power. The microscopy data also support the hypothesis of the ability of MSC-EVs to influence the chondrocytes residing in the ECM of the cartilage and the synovial cells of the synovial membrane through active interaction and the release of their therapeutic content.


Email: