header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

TREATMENT OF IMPLANT-ASSOCIATED OSTEOMYELITIS WITH INJECTABLE IN SITU-FORMING DEPOT DRUG DELIVERY SYSTEM

The European Bone and Joint Infection Society (EBJIS) Meeting, Graz, Austria, 8–10 September 2022.



Abstract

Aim

Several local antibiotic-eluting drug delivery systems have been developed to treat bacterial bone infections. However, available systems have significant shortcomings, including suboptimal drug-release profiles with a burst followed by subtherapeutic release, which may lead to treatment failure and selection for drug resistance.

Here, we present a novel injectable, biocompatible, in situ-forming depot, termed CarboCells, which can be fine-tuned for the desired antibiotic-release profile. The CarboCell technology has flexible injection properties that allow surgeons to accurately place antibiotic-eluting depots within and surrounding infectious sites in soft tissue and bones. The CarboCell technology is furthermore compatible with clinical image-guided injection technologies.

These studies aimed to determine the therapeutic potential of CarboCell formulations for treatment of implant-associated osteomyelitis by mono- and dual antimicrobial therapy.

Methods

The solubility and stability of several antibiotics were determined in various CarboCell formulations, and in vitro drug release was characterized. Lead candidates for antimicrobial therapy were selected using a modified semi-solid biofilm model with 4-day-matured Staphylococcus aureus biofilm (osteomyelitis-isolate, strain S54F9). Efficacy was investigated in a rat implant-associated osteomyelitis model established in the femoral bone by intraosseous implantation of a stainless-steel pin with 4-day-old in vitro-matured S. aureus biofilm. CarboCells were injected subcutaneously at the femur, and antimicrobial efficacy was evaluated 7 days post-implantation. Lead formulations were subsequently tested in a well-established translational implant-associated tibial S. aureus osteomyelitis pig model. Infection was established for 7 days before revision surgery consisting of debridement, washing, implantation of a new stainless-steel pin, and injection of antibiotic-releasing CarboCells into the debrided cavity and in the surrounding bone- and soft-tissue. Seven days post-revision, pigs were euthanized, and samples were collected for microbial and histopathological evaluation.

Results

Lead antimicrobial agents were soluble in high concentrations and were stable in CarboCell formulations. Three combinations completely eradicated bacteria in the in vitro semi-solid biofilm model. In the rat osteomyelitis model, CarboCell formulations of the lead combinations also eradicated bacteria in bone and implant in several rats and significantly reduced infection in all treated rats. In the pig model, CarboCell antimicrobial monotherapy demonstrated promising therapeutic efficacy, including complete eradication of infection in bone and implants in several pigs and significantly reduced bacterial burden in others.

Conclusions

Using the CarboCell technology for antimicrobial delivery exert substantial loco-regional efficacy. The attractive sustained high-dose antibiotic release profile combined with the flexible injection technology allows surgeons to accurately place effective drug-eluting depots in key areas not accessible to competing technologies.


E-mail: