header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ESTABLISHMENT OF A NOVEL GRAM-NEGATIVE PROSTHETIC JOINT INFECTION RAT MODEL USING UNCEMENTED HIP HEMIARTHROPLASTY

The European Bone and Joint Infection Society (EBJIS) Meeting, Graz, Austria, 8–10 September 2022.



Abstract

Introduction

Gram-negative prosthetic joint infections (GN-PJI) present unique challenges in management due to their distinct pathogenesis of biofilm formation on implant surfaces. The purpose of this study is to establish a clinically representative GN-PJI model that can reliably recapitulate biofilm formation on titanium implant surface in vivo. We hypothesized that biofilm formation on an implant surface will affect its ability to osseointegrate.

Methods

The model was developed using 3D-printed titanium hip implants, to replace the femoral head of male Sprague-Dawley rats. GN-PJI was induced using two bioluminescent Pseudomonas aeruginosa strains: a reference strain (PA14-lux) and a mutant biofilm-defective strain (ΔflgK-lux). Infection was monitored in real-time using the in vivo imaging system (IVIS) and Magnetic Resonance Imaging (MRI). Bacterial loads on implant surface and in periprosthetic tissues were quantified utilizing viable-colony-count. Field-emission scanning-electron-microscopy of the explanted implants was used to visualize the biofilm formation at the bone-implant-interface. The implant stability, as an outcome, was directly assessed by quantifying the osseointegration in vitro using microCT scan, and indirectly assessed by identifying the gait pattern changes using DigiGaitTM system in vivo.

Results

Localized infection was established within the hip joint and was followed by IVIS in real-time. There was a quantitative and qualitative difference in the bacterial load and biofilm formation between PA14-lux and ΔflgK-lux. This difference in the ability to persist in the model between the two strains was reflected in the gait pattern and implant osseointegration.

Conclusions

We developed a novel uncemented hip hemiarthroplasty, GN-PJI rat model. To date, the proposed in vivo biofilm-based model is the most clinically representative for GN-PJI since animals can bear weight on the implant and poor osseointegration correlates with biofilm formation. In addition, localized PJI was detected by various modalities.

Clinical Relevance

The proposed in vivo GN-PJI model will allow for more reliable testing of novel biofilm-targeting therapeutics.


E-mail: