header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE EFFECT OF IL-1B IN OSTEOCHONDRAL TISSUES USING A NOVEL PATELLAR EXPLANT FOR OSTEOARTHRITIS

The 27th Annual Meeting of the European Orthopaedic Research Society (EORS), Maastricht, The Netherlands, 2–4 October 2019.



Abstract

Osteoarthritis (OA) is a disease that affects both bone and cartilage. Typically, this disease leads to cartilage degradation and subchondral bone sclerosis but the link between the two is unknown. Also, while OA was traditionally thought of as non-inflammatory condition, it now seems that low levels of inflammation may be involved in the link between these responses. This is particularly relevant in the case of Post-Traumatic OA (PTOA), where an initial phase of synovial inflammation occurs after injury. The inflammatory mediator interleukin 1 beta (IL-1B) is central to this response and contributes to cartilage degradation. However, whether there is a secondary effect of this mediator on subchondral bone, via bone-cartilage crosstalk, is not known. To address this question, we developed a novel patellar explant model, to study bone cartilage crosstalk which may be more suitable than commonly used femoral head explants. The specific aim of this study was to validate this novel patellar explant model by using IL-1B to stimulate the inflammatory response after joint injury and the subsequent development of PTOA.

Female Sprague Dawley rats (n=48) were used to obtain patellar explants, under an institutional ethical approval license. Patellae were maintained in high glucose media, under sterile culture conditions, with or without IL-1B (10ng/ml), for 7 days. Contralateral patellae served as controls. One group (n= 12) of patellae were assessed for active metabolism, using two both Live and Dead (L/D) staining and an Alamar Blue assay (AB). A second group (n=12) was used for tissue specific biochemical assays for both bone (Alkaline Phosphatase) and cartilage (sulfated proteoglycan and glycosaminoglycan (sGaG)). Finally, a third group (n=28) of explants were used for histologically analysis. Samples were decalcified, embedded in paraffin and sectioned to 7µm thickness, and then stained using H&E; and Safranin O with fast green. Additionally, toluidine blue and alkaline phosphatase staining were also performed.

Our results demonstrate that our system can maintain good explant viability for at least 7 days, but that IL-1B reduces cell viability in patellar cartilage, as measured by both L/D and AB assays after 0, 2, 4 and 7 days in culture. In contrast, sGaG content in cartilage were increased by this treatment. Additionally, ALP, a marker of osteoblastic activity, was increased in IL-1B treated group 4 and 7 days, but was also showed some increase in control groups. Histological analyses showed that IL-1B treatment resulted in reduced proteoglycan staining, demonstrating the powerful effect of this factor in injury response over time.

Thus, we conclude that IL-1B affects both bone and cartilage tissues independently in this system, which may have relevance in understanding bone-cartilage crosstalk after injury and how this is involved in PTOA development.


Email: