header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

NANOPARTICLE-FUNCTIONALIZED POLY-METHYL METHACRYLATE BONE CEMENT FOR SUSTAINED CHEMOTHERAPEUTIC DRUG DELIVERY

The Canadian Orthopaedic Association (COA) and Canadian Orthopaedic Research Society (CORS) Virtual Annual Meeting 2020, held online, 19–20 June 2020.



Abstract

Great strides have been made in the early detection and treatment of cancer which is resulting in improved survivability and more Canadians living with cancer. Approximately 80% of primary breast, lung, and prostate cancers metastasize to the spine. Poly-methyl methacrylate (PMMA) bone cement is one of the most commonly used bone substitutes in spine surgery. In clinical practice it can be loaded with various drugs, such as antibiotics or chemotheraputic drugs, as a means of local drug delivery. However, studies have shown that drugs loaded into PMMA cement tend to release in small bursts in the first 48–72 hours, and the remaining drug is trapped without any significant release over time. The objective of this study is to develop a nanoparticle-functionalized PMMA cement for use as a sustained doxorubicin delivery device. We hypothesize that PMMA cement containing mesoporous silica nanoparticles will release more doxorubicin than regular PMMA.

High viscosity SmartSet ™ PMMA cement by DePuy Synthes was used in this study. The experimental group consisted of 3 replicates each containing 0.24 g of mesoporous silica nanoparticles, 1.76 g of cement powder, 1ml of liquid cement monomer and 1 mg of doxorubicin. The control group consisted 3 replicates each containing 2.0 g of cement powder, 1ml of liquid cement monomer and 1 mg of doxorubicin. The experimental group contained an average of 8.18 ± 0.008 % (W/W) mesoporous silica nanoparticles. Each replicate was casted into a cylindrical block and incubated in a PBS solution which was changed at predetermined intervals for 45 days. The concentration of eluted doxorubicin in each solution was measured using a florescent plate reader. The mechanical properties of cement were assessed by unconfined compression testing. The effect of the doxorubicin released from cement on prostate and breast tumor cell metabolic activity was assessed using the Alamar Blue test.

After 45 days the experimental group released 3.24 ± 0.25 % of the initially loaded doxorubicin which was more than the 2.12 ± 0.005% released by the control group (p 0.03). There was no statistically significant difference in Young's elasticity modulus between groups (p 0.53). Nanoparticle functionalized PMMA suppressed the metabolic activity of prostate cancer by more than 50 percent but did not reach statistical significance. Nanoparticle functionalized PMMA suppressed the metabolic activity of breast cancer cells by 69 % (p < 0.05).

Nanoparticle-functionalized PMMA cement can release up to 1.53 times more doxorubicin than the standard PMMA. The use of mesoporous silica nanoparticles to improve drug release from PMMA cement shows promise. In the future, in vivo experiments are required to test the efficacy of released doxorubicin on tumor cell growth.


Email: