header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

EVALUATION OF THE ABILITY OF AUTOLOGOUS FAT-DERIVED MESENCHYMAL STEM CELLS (MSCS) TO PROMOTE FRACTURE HEALING

The British Orthopaedic Research Society (BORS) Annual Meeting 2020, held online, 7–8 September 2020.



Abstract

Abstract

Objectives

The role of MSCs in enhancing healing has been examined with allogeneic and xenogeneic cells in transplantation models. However, certain factors might limit the use of allogeneic cells in clinical practice, (e.g. disease transmission, ethical issues and patient acceptance). Adipose tissue represents an abundant source for autologous cells. The aim of this study was to evaluate adipose-derived autologous cells for preventing non-union.

Methods

Adults male Wistar rats (n=5) underwent a previously published surgical procedure known to result in non-union if no treatment is given. This consisted of a mid-shaft tibial osteotomy with peri/endosteal stripping stabilized by intramedullary nail fixation with a 1mm gap maintained by a spacer shown to have minimal effect on fracture healing. During the same operation, ipsilateral inguinal subcutaneous fat was harvested and processed for cell isolation. After three weeks in culture, the cell number reached 5 million and were injected into the fracture site.

Results

At the end of the experiment, all tibias (injected with autologous fat-MSCs) developed union, 5/5. These were compared with a control group injected with PBS (n=4) and with allogenic (n=5) and xenogeneic (n=6) cell transplantation groups. The amount of callus was noticeably large in the autologous cell group and the distal-callus index was significantly greater than that of the other groups, P-value < 0.05, unpaired t-test, corrected by Benjamini & Hochberg.

Conclusion

We report a novel method for autologous MSCs implantation to stimulate fracture healing. Local injection of autologous fat-MSCs into the fracture site resulted in a solid union in all the tibias with statistically significantly greater amounts of callus. Xenogeneic Bone Marrow and Fat derived MSCs have previously been shown to have similar effects (Tawonsawatruk et al. 2014), we show here that autologous MSCs were significantly better than the xenogenic MSCs at producing union.

Declaration of Interest

(b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project.