header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

SUSTAINED DELIVERY OF GLUTAMATE RECEPTOR ANTAGONISTS TO PREVENT OSTEOARTHRITIS

The British Orthopaedic Research Society (BORS) Annual Meeting 2020, held online, 7–8 September 2020.



Abstract

Abstract

OBJECTIVES

Osteoarthritis therapies are limited to symptom management and joint replacement. AMPA/kainate glutamate receptor (GluR) antagonists (NBQX/DNQX, 2.5–20mM) alleviate symptoms and disease in rodent models of osteoarthritis. We hypothesised that poly(lactic-co-glycolic) acid (PLGA) nanoparticles and thermoresponsive hydrogels sustain GluR antagonist release to improve their efficacy in an humanised 3D bone model of inflammation.

METHODS

Drug release in PBS (37 °C) was measured by HPLC of samples taken from 2.5mM NBQX/DNQX loaded PLGA nanoparticles (double emulsion) and thermosetting hydrogels (homogenised Pluronic-F127 (22%/25% w/v) and Carbopol 934 (0.5% w/v) with 2.5mM NBQX/DNQX in dH2O)(n=3). Y201 MSCs were cultured in 3D in rat tail collagen type I gels and exposed to IL-6/sIL-6r (5/40ng/ml), free NBQX (200μM) or NBQX loaded PLGA nanoparticles for 24 and 72hrs. Bone turnover, inflammatory and glutamate signalling markers were quantified by immunoassay and RTqPCR. Data analysed using t-test/ANOVA with Tukeys and principal component analysis (PCA)(SPSS).

RESULTS

Nanoparticles released 45% encapsulated DNQX over 3hrs followed by sustained release over 5 weeks. Thermoresponsive hydrogels released entire DNQX load over 27 hours (22 and 25% hydrogels). PCA revealed IL-6/sIL-6r treatment affected bone turnover, inflammation and glutamate signalling markers in vitro. Free NBQX treatment increased anti-inflammatory cytokine at 24hrs (IL-4, IL-10, IL-13) levels vs IL-6 treatment groups (p<0.05) and corrected IL-6 induced reduction in ALP expression (24hrs, p<0.05). Nanoparticle NBQX delivery induced increased IL-6 expression vs controls (72hrs, p<0.05) and increased glutamate and IL-6 protein release at (72hrs, p<0.05 and p<0.001 respectively).

CONCLUSIONS

Nanoparticles rapid release of DNQX (6.6μM /3 hours), mimics free drug effective in vivo but was followed by sustained release over 5 weeks. hydrogels released 2.5mM DNQX over a short time (27hrs). Free NBQX intervention mitigated bone turnover, inflammation and glutamate signalling changes following IL-6 exposure to bone cells in vitro.

Declaration of Interest

(b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project.