header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

EFFECT OF BONE MARROW STROMAL CELL ADDITION TO BONE MARROW ASPIRATE-LOADED BONE GRAFT SUBSTITUTES ON BONE REGENERATION

The British Orthopaedic Research Society (BORS) Annual Meeting 2020, held online, 7–8 September 2020.



Abstract

Abstract

Purpose

It is becoming apparent that mesenchymal stem cells (MSCs) do not directly contribute to mesenchymal tissue regeneration. Pre-clinical attempts to repair large bone defects in big animal models have been hampered by poor MSCs survival after implantation which impedes their direct or indirect effects. Based on previous work, we hypothesized that a venous axial vascularization of the scaffold supporting MSCs or their combination with fresh bone marrow (BM) aspirate would improve their in vivo survival.

Methods

Cross-shape profile tubular microporous monetite implants (12mm long, 5mm large) as two longitudinal halves were produced by 3D powder printing. They were implanted around the femoral veins of Wistar rats and loaded with 1mL of BM aspirate either alone or supplemented by 107 MSCs. This was compared with BM-free scaffolds loaded only with 107 MSCs. After 8 weeks bone formation were investigated by micro-CT, scanning electron microscopy, histology and immunohistochemistry.

Results

Little bone formation was observed within the scaffold when it was only loaded with MSCs surprisingly. Coupling MSCs, autologous BM and venous perfusion of the scaffold led to a higher volume of new bone than BM alone suggesting that MSCs augmented the bone formation capacity of BM aspirate or enhanced its survival post implantation.

Conclusion

Subcutaneous bone formation within 3D-printed implant that mixed of BM with or without MSCs was successfully achieved for the first time by venous perfusion. The inability of MSCs to form differentiated tissues by their own was confirmed in this study; however, contact between MSCs and BM cells and MSCs paracrine secretome (e.g., cytokines, chemokines, extracellular vesicles) may have induced immunomodulatory effects (e.g., macrophages polarization, Treg cells) that triggered bone formation. This approach, if translatable to large animal models, offers immediate clinical value as well as an insight into the role of immune system in tissue regeneration.

Declaration of Interest

(b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported: I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project.