header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

MECHANICAL LOADING UPREGULATES THE PIEZO1 CHANNEL IN HUMAN STEM CELL-DERIVED OSTEOCYTES

The British Orthopaedic Research Society (BORS) Annual Meeting 2021, held online, 13–14 September 2021.



Abstract

Abstract

Objectives

Osteocytes function as critical regulators of bone homeostasis by sensing mechanical signals. Stimulation of the mechanosensitive ion channel, Piezo1 promotes bone anabolism and deletion of Piezo1 in osteoblasts and osteocytes decreases bone mass and bone strength in mice. This study determined whether loading of osteocytes in vitro results in upregulation of the Piezo1 pathway.

Methods

Human MSC cells (Y201), embedded in type I collagen gels and differentiated to osteocytes in osteogenic media for 7-days, were subjected to pathophysiological load (5000 µstrain, 10Hz, 5 mins; n=6) with unloaded cells as controls (n=4). RNA was extracted 1-hr post load and Piezo1 activation assessed by RNAseq analysis (NovaSeq S1 flow cell 2 × 100bp PE reads). To mimic mechanical load and activate Piezo1, Y201s were differentiated to osteocytes in 3D gels for 13 days and treated, with Yoda1 (5µM, 2 hours, n=4); vehicle treated cells served as controls (n=4). Extracted RNA was subjected to RT-qPCR and data analysed by Minitab.

Results

Low mRNA expression of PIEZO1 in unloaded cells was upregulated 5-fold following 1-hr of mechanical load (p=0.003). In addition, the transcription factor NFATc1, a known regulator of Piezo1 mechanotransduction, was also upregulated by load (2.4-fold; p=0.03). Y201 cells differentiated in gels expressed the osteocyte marker, SOST. Yoda1 upregulated PIEZO1 (1.7-fold; p=0.057), the early mechanical response gene, cFOS (4-fold; p=0.006), COL1A1 (3.9-fold; p=0.052), and IL-6 expression (7.7-fold; p=0.001).

Discussion

This study reveals PIEZO1 as an important mechanosenser in osteocytes. Piezo 1 mediated increases in the bone matrix protein, type I collagen, and IL-6, a cytokine that drives inflammation and bone resorption. This provides a direct link between mechanical activation of Piezo 1, bone remodelling and inflammation, which may contribute to mechanically-induced joint degeneration in osteoarthritis. Mechanistically, we hypothesise this may occur through promoting Ca2+ influx and activation of the NFAT1 signalling pathway.