header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

STRUCTURAL AND BIOMECHANICAL EVALUATION OF DECELLULARIZED HUMAN ALLOGRAFT BONE FROM DIFFERENT ANATOMICAL SOURCES

The British Orthopaedic Research Society (BORS) Annual Meeting 2021, held online, 13–14 September 2021.



Abstract

Abstract

Introduction

Bone grafts are utilised in a range of surgical procedures, from joint replacements to treatment of bone loss resulting from cancer. Decellularised allograft bone is a regenerative, biocompatible and immunologically safe potential source of transplant bone.

Objectives

To compare the structural and biomechanical parameters of decellularised and unprocessed (cellular) trabecular bone from the human femoral head (FH) and tibial plateau (TP).

Methods

Bone pins were harvested from 10 FHs and 11 TPs (27, 34 respectively). Pins were decellularised (0.1% w/v sodium dodecyl sulphate) or retained as cellular controls. QA testing was carried out to assess protocol efficacy (total DNA and histological analysis). Cellular and decellularised FH (n=7) and TP (n=10) were uCT scanned. Material density (MD); apparent density (BV/TV); trabecular connectivity; trabecular number; trabecular thickness (Tb-t) and trabecular spacing were measured. Pins were then compression tested to determine ultimate compressive stress (UCS), Young's modulus and 0.2% proof stress.

Results

Total DNA levels of decellularised bone were below 50 ng.mg−1 dry weight. Cell nuclei and marrow were largely removed. No significant differences in properties were found between decellularised and cellular bone from either anatomical region (p>0.05, Mann-Whitney). No significant differences in biomechanical properties were found between cellular FH and cellular TP (p>0.05) though significant differences in structural properties were found (MD: TP>FH, p=0.001; BV/TV: FH>TP, p=0.001; and Tb-t: FH>TP, p=0.005). Significant differences were found between decellularised FH and decellularised TP (UCS: FH>TP, p=0.001; Young's modulus: FH>TP, p=0.002; proof stress; FH>TP, p=0.001; MD: TP>FH, p<0.001; BV/TV: FH>TP, p<0.001 and Tb-t: FHT>P p<0.001.

Conclusion

Decellularisation did not affect the properties of human trabecular bone. Differences were found between the mechanical and structural properties of decellularised FH and TP which could facilitate stratified bone grafts for different applications.

Declaration of Interest

(a) fully declare any financial or other potential conflict of interest