header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

INFLUENCE OF CEFTRIAXONE ON HUMAN BONE CELL VIABILITY AND MINERALIZATION POTENTIAL: AN VITRO STUDY

The European Bone and Joint Infection Society (EBJIS), Ljubljana, Slovenia, 7–9 October 2021.



Abstract

Aim

Implant-associated infection usually require prolonged treatment or even removal of the implant. Local application of antibiotics is used commonly in orthopaedic and trauma surgery, as it allows reaching higher concentration in the affected compartment, while at the same time reducing systematic side effects. Ceftriaxone release from calcium sulphate has a particularly interesting, near-constant release profile in vitro, making it an interesting drug for clinical application. Purpose of the present study was to investigate the potential cytotoxicity of different ceftriaxone concentrations and their influence on osteogenic differentiation of human pre-osteoblasts.

Method

Human pre-osteoblasts were cultured up to 28 days in different ceftriaxone concentrations, ranging between 0 mg/L and 50’000 mg/L. Cytotoxicity was determined quantitatively by measuring lactate dehydrogenase release, metabolic activity, and cell proliferation. Gene expression analysis of bone-specific markers as well as mineralization and protein expression of collagen-I (Col-I) were investigated to assess osteogenic differentiation.

Results

Cytotoxic effects on human pre-osteoblasts could be shown above 15’000 mg/L after 1 and 2 days, whereas subtoxic effects could be observed at concentrations at 500 mg/L after 10 days. Cell proliferation showed no clear alteration up to 1000 mg/L, though a notable decline at 1500 mg/L could be seen after 10 days. Gene and protein expression of Col-I showed a concentration-dependent decrease at day 10 and 14, but also mineralization levels of human pre-osteoblasts presented a similar trend at day 28. Interestingly, the degree of mineralization was already impaired at concentrations above 250 mg/L.

Conclusions

These findings provided extensive insights into the influence of different ceftriaxone concentrations on viability, proliferation, gene, and protein expression but also mineralization of human bone pre-osteoblasts. While short-term cytotoxicity is observed only at very high concentrations, metabolism may be impaired at much lower concentrations when exposure is prolonged. Release of ceftriaxone expected from calcium sulphate however remains below thresholds of impaired bone mineralization, even after 4 weeks of exposure. This study demonstrates the importance of properly selecting and monitoring antibiotic concentrations during clinical application.


Email: