header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

PLATELET-RICH FIBRIN (PRF) ACCELERATES THE HEALING OF ACHILLES TENDON DEFECT BY PROMOTING THE PROLIFERATION AND ACTIVATION OF TENOCYTES VIA FGFR/AKT SIGNALLING AND TGF-B/SMAD3 SIGNALLING

The 29th Annual Meeting of the European Orthopaedic Research Society (EORS), Rome, Italy, 15–17 September 2021.



Abstract

Introduction and Objective

Achilles tendon defect is difficult problem for orthopedic surgeon, and therefore the development of new treatments is desirable. Platelet-rich fibrin (PRF), dense fibrin scaffold composed of a fibrin matrix containing many growth factors, is recently used as regenerative medicine preparation. However, few data are available on the usefulness of PRF on Achilles tendon healing after injury. The objective of this study is to examine whether PRF promotes the healing of Achilles tendon defect in vivo and evaluated the effects of PRF on tenocytes in vitro.

Materials and Methods

PRF were prepared from rats according to international guidelines on the literature. To create rat model for Achilles tendon defect, a 4-mm portion of the right Achilles tendon was completely resected, and PRF was placed into the gap in PRF group before sewing the gap with nylon sutures. To assess the histological healing of Achilles tendon defect, Bonar score was calculated using HE, Alcian-blue, and Picosirius-red staining section. Basso, Beattie, Bresnahan (BBB) score was used for the evaluation of motor functional recovery. Biomechanical properties including failure tensile load, ultimate tensile stress, breaking elongation, and elastic modulus were measured. We examined the effects of PRF on tenocytes isolated from rat Achilles tendon in vitro. The number of viable cells were measured by MTS assay, and immunostaining of ki-67 was used for detection of proliferative cells. Migration of tenocytes was evaluated by wound closure assay. Protein or gene expression level of extracellular matrix protein, such as collagen, were evaluated by immunoblotting, immunofluorescence, or PCR. Phosphorylation level of AKT, FGF receptor, or SMAD3 was determined by western blotting. Inhibitory experiments were performed using MK-2206 (AKT inhibitor), FIIN-2 (FGFR inhibitor), SB-431542 (TGF-B receptor inhibitor), or SIS3 (SMAD3 inhibitor). All p values presented are two-sided and p values < 0.05 were considered statistically significant.

Results

In rat Achilles tendon defects, Bonar score was significantly improved in PRF group compared to control group. Collagen deposition at the site of Achilles tendon defect was observed earlier in PRF group. Consistent with the histological findings, BBB score was significantly improved in PRF group. PRF also significantly improved the biomechanical properties of injured Achilles tendon. Furthermore, proliferating tenocytes, labelled by ki-67 were significantly increased in PRF group. These data suggested PRF prompted the healing of Achilles tendon defect. Thus, we further examined the effects of PRF on tenocytes in vitro. PRF significantly increased the number of viable cells, the proliferative cells labelled by ki-67, and migratory ability. Furthermore, PRF significantly increased the protein expression levels of collagen-I, collagen-III, α-SMA, and tenascin-C in tenocytes. Next, we examined the signalling pathway associated with PRF-induced proliferation of tenocytes. PRF increased the phosphorylation level and induced nuclear translocation of AKT, known as key regulator of cell survival. PRF also induced the phosphorylation of FGF receptor. Inhibition of AKT or FGF-receptor completely suppressed the positive effects of PRF on tenocytes. Furthermore, we found that inhibition of FGF receptor partially suppressed the phosphorylation of AKT by PRF. Thus, PRF induced the proliferation of tenocytes via FGFR/AKT axis. We further evaluated the signalling pathway associated with PRF-induced expression of extracellular matrix. PRF increased the phosphorylation levels of SMAD3 and induced nuclear translocation of SMAD3. Furthermore, inhibition of TGF-B receptor or SMAD3 suppressed increased expression level of extracellular matrix by PRF. Thus, PRF increased expression level of extracellular matrix protein via TGF-BR/SMAD3 axis

Conclusions

PRF promotes tendon healing of the Achilles tendon defect and recovery of exercise performance and biomechanical properties. PRF increases the proliferation ability or protein expression level of extracellular matrix protein in tenocytes via FGFR/AKT or TGF-βR/SMAD3 axis, respectively.


Email: