header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

PULLEY PLASTY TECHNIQUES VERSUS RESECTİON OF SINGLE FLEXOR DIGITORUM SUPERFICIALIS SLİP AND VENTING TECHNIQUE COMPARISON AFTER BOTH TENDON REPAIR IN ZONE II: A BIOMECHANICAL STUDY

The 29th Annual Meeting of the European Orthopaedic Research Society (EORS), Rome, Italy, 15–17 September 2021.



Abstract

Introduction and Objective

Zone 2 flexor tendon injuries are still one of the challenges for hand surgeons. It is not always possible to achieve perfect results in hand functions after these injuries. There is no consensus in the literature regarding the treatment of zone 2 flexor tendon injuries, tendon repair and surgical technique to be applied to the A2 pulley. The narrow fibro-osseous canal structure in zone 2 can cause adhesions and loss of motion due to the increase in tendon volume due to surgical repair. Different surgical techniques have been defined to prevent this situation. In our study, in the treatment of zone 2 flexor tendon injuries; Among the surgical techniques to be performed in addition to FDP tendon repair; We aimed to compare the biomechanical results of single FDS slip repair, A2 pulley release and two different pulley plasty methods (Kapandji and V-Y pulley plasty).

Materials and Methods

In our study, 12 human upper extremity cadavers preserved with modified Larssen solution (MLS) and amputated at the mid ½ level of the arm were used. A total of 36 fingers (second, third and the fourth fingers were used for each cadaver) were divided into four groups and 9 fingers were used for each group. With the finger fully flexed, the FDS and FDP tendons were cut right in the middle of the A2 pulley and repaired with the cruciate four-strand technique. The surgical techniques described above were applied to the groups. Photographs of fingers with different loads (50 – 700 gr) were taken before and after the application. Proximal interphalangeal (PIP) joint angle, PIP joint maximum flexion angle and bowstring distance were measured. The gliding coefficient was calculated by applying the PIP joint angle to the single-phase exponential association equation.

Results

Gliding coefficient after repair increased by %21.46 ± 44.41, %62.71 ± 116.9, %26.8 ± 35.35 and %20.39 ± 28.78 in single FDS slip repair, A2 pulley release, V-Y pulley plasty and Kapandji plasty respectively. The gliding coefficient increased significantly in all groups after surgical applications (p<0.05). PIP joint maximum flexion angle decreased by %3.17 ± 7.92, %12.82 ± 10.94, %8.33 ± 3.29 and %7.35 ± 5.02 in single FDS slip repair, A2 pulley release, V-Y pulley plasty and Kapandji plasty respectively. PIP joint maximum flexion angle decreased significantly after surgery in all groups (p<0.05). However, there was no statistically significant difference between surgical techniques for gliding coefficient and PIP joint maximum flexion angle. Bowstring distance between single FDS slip repair, kapandji pulley plasty and V-Y pulley plasty showed no significant difference in most loads (p>0.05). Bowstring distance was significantly increased in the A2 pulley release group compared to the other three groups (p<0.05).

Conclusion

Digital motion was negatively affected after flexor tendon repair. Similar results were found in terms of gliding coefficient and maximum flexion angle among different surgical methods. As single FDS slipe repair preserves the anatomical structure of the A2 pulley therefore we prefer it as an ideal method for zone 2 flexor tendon repair. However, resection of FDS slip may jeopardizes nutrition to the flexor digitorum profundus tendon which weakens the repair site. Therefore the results must be confirmed by an in vivo study before a clinical recommendation can be made.

Keywords: Flexor tendon; injury; pulley plasty; cadaver;


Email: