header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

BIOMECHANICAL ANALYSIS OF RECENTLY RELEASED CEPHALOMEDULLARY NAILS FOR TROCHANTERIC FEMORAL FRACTURE FIXATION IN A HUMAN CADAVERIC MODEL

The 29th Annual Meeting of the European Orthopaedic Research Society (EORS), Rome, Italy, 15–17 September 2021.



Abstract

Introduction and Objective

Trochanteric fractures are associated with increasing incidence and represent serious adverse effect of osteoporosis. Their cephalomedullary nailing in poor bone stock can be challenging and associated with insufficient implant fixation in the femoral head. Despite ongoing implant improvements, the rate of mechanical complications in the treatment of unstable trochanteric fractures is high. Recently, two novel concepts for nailing with use of a helical blade – with or without bone cement augmentation – or an interlocking screw have demonstrated advantages as compared with single screw systems regarding rotational stability and cut-out resistance. However, these two concepts have not been subjected to direct biomechanical comparison so far. The aims of this study were to investigate in a human cadaveric model with low bone density (1) the biomechanical competence of cephalomedullary nailing with use of a helical blade versus an interlocking screw, and (2) the effect of cement augmentation on the fixation strength of the helical blade.

Materials and Methods

Twelve osteoporotic and osteopenic femoral pairs were assigned for pairwise implantation using either short TFN-ADVANCED Proximal Femoral Nailing System (TFNA) with a helical blade head element, offering the option for cement augmentation, or short TRIGEN INTERTAN Intertrochanteric Antegrade Nail (InterTAN) with an interlocking screw. Six osteoporotic femora, implanted with TFNA, were augmented with 3 ml cement. Four study groups were created – group 1 (TFNA) paired with group 2 (InterTAN), and group 3 (TFNA augmented) paired with group 4 (InterTAN). An unstable pertrochanteric OTA/AO 31-A2.2 fracture was simulated. All specimens were biomechanically tested until failure under progressively increasing cyclic loading featuring physiologic loading trajectory, with monitoring via motion tracking.

Results

T-score in groups 3 and 4 was significantly lower compared with groups 1 and 2, p=0.03. Stiffness (N/mm) in groups 1 to 4 was 335.7+/−65.3, 326.9+/−62.2, 371.5+/−63.8 and 301.6+/−85.9, being significantly different between groups 3 and 4, p=0.03. Varus (°) and femoral head rotation around neck axis (°) after 10,000 cycles were 1.9+/−0.9 and 0.3+/−0.2 in group 1, 2.2+/−0.7 and 0.7+/−0.4 in group 2, 1.5+/−1.3 and 0.3+/−0.2 in group 3, and 3.5+/−2.8 and 0.9+/−0.6 in group 4, both with significant difference between groups 3 and 4, p<=0.04. Cycles to failure and failure load (N) at 5° varus in groups 1 to 4 were 21428+/−6020 and 1571.4+/−301.0, 20611+/−7453 and 1530.6+/−372.7,21739+/−4248 and 1587.0+/−212.4, and 18622+/−6733 and 1431.1+/−336.7, both significantly different between groups 3 and 4, p=0.04.

Conclusions

From a biomechanical perspective, cephalomedullary nailing of trochanteric fractures with use of helical blades is comparable to interlocking screw fixation in femoral head fragments with low bone density. Moreover, bone cement augmentation of helical blades considerably improves their fixation strength in poor bone quality.


Email: