header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

HUMAN AMNIOTIC MEMBRANE POTENTIAL FOR BONE REPAIR: FROM THE LAB TO THE CLINIC

The 29th Annual Meeting of the European Orthopaedic Research Society (EORS), Rome, Italy, 15–17 September 2021.



Abstract

The human amniotic membrane (hAM), derived from the placenta, possesses a low (nay inexistant) immunogenicity and exerts an anti-inflammatory, anti-fibrotic, antimicrobial, antiviral and analgesic effect. It is a source of stem cells and growth factors promoting tissue regeneration. hAM acts as an anatomical barrier with adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability) preventing the proliferation of fibrous tissue and promoting early neovascularization of the surgical site. Cryopreservation and lyophilization, with sometimes additional decellularization process, are the main preservation methods for hAM storage.

We examined the use of hAM in orthopaedic and maxillofacial bone surgery, specially to shorten the induced membrane technique (Gindraux, 2017). We investigated the cell survival in cryopreserved hAM (Laurent, 2014) and the capacity of intact hAM of in vitro osteodifferentiation (Gualdi, 2019). We explored its in vivo osteogenic potential in an ectopic model (Laurent, 2017) and, with Inserm U1026 BioTis, in a calvarial defect (Fenelon, 2018). Still piloted by U1026, decellularization and/or lyophilization process were developed (Fenelon, 2019) and, processed hAM capacities was assessed for guided bone regeneration (Fenelon 2020) and induced membrane technique (Fenelon, 2021) in mice.

We reported a limited function of hAM for bone defect management. In this light, we recognized medication-related osteonecrosis of the jaw (MRONJ) as appropriate model of disease to evaluate hAM impact on both oral mucosa and bone healing. We treated height compassionate patients (stage II, III) with cryopreserved hAM. A multicentric randomized clinical study (PHRC-I 2020 funding) will be soon conducted in France (regulatory and ethical authorization in progress).


Email: