header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

MESENCHYMAL STROMAL CELL SPHEROIDS: EFFECT OF CELL PACKING AND BIOMATERIAL COMPOSITION ON CHONDROGENIC DIFFERENTIATION IN VITRO

The 29th Annual Meeting of the European Orthopaedic Research Society (EORS), Rome, Italy, 15–17 September 2021.



Abstract

Introduction

Current cell-based treatments and marrow stimulating techniques to repair articular cartilage defects are limited in restoring the tissue in its native composition. Despite progress in cartilage tissue engineering and chondrogenesis in vitro, the main limitation of this approach is the progression towards hypertrophy during prolonged culture in pellets or embedded in biomaterials. The objectives of this study were (A) to compare human bone marrow-derived mesenchymal stromal cells (hMSC) chondrogenesis and hypertrophy in pellet culture from single cells or cell spheroids and (B) to investigate the effect of tyramine-modified hyaluronic acid (THA) and collagen I (Col) content in composite hydrogels on the chondrogenesis and hypertrophy of encapsulated hMSC spheroids.

Materials and Methods

Pellet cultures were prepared either from hMSC single cells (250’000 cells/pellet) or hMSC spheroids (282 cells/spheroid) at the same final cell concentration (250’000 cells/pellet = 887 spheroids/pellet). The effect of polymer concentration on encapsulated hMSC spheroids (887 spheroids/hydrogel) was investigated in THA-Col hydrogels (50μl) at the following concentrations (THA-Col mg/ml): Group (1) 12.5–2.5, (2) 16.7–1.7, (3) 12.5–1.7, (4) 16.7–2.5 mg/ml. All samples were cultured for 21 days in standard chondrogenic differentiation medium containing 10ng/ml TGF-β1. Chondrogenic differentiation and hypertrophy of both pellet cultures and hMSCs spheroids encapsulated in THA-Col were analysed using gene expression analysis (Aggrecan (ACAN), COL1A1, COL2A1, COL10A1), dimethylmethylene-Blue assay to quantify glycosaminoglycans (GAGs) retained in the samples and (immuno-) histological staining (Safranin-O, collagen II, aggrecan) on day 1 and day 21 (n=3 donors).

Results

The culture of hMSCs in pellets based on single cells or spheroids resulted in an increase in chondrogenic-associated markers COL2A1 (2’900–3’400-fold) and ACAN (45–47-fold) compared to respective samples on day 1 in both groups. GAGs increased in spheroid pellets to 21.2±3.4 mg/ml and in single cell pellets to 20.8±6.6 mg/ml on day 21. Comparing the levels of hypertrophic markers, single cell pellets showed 7-fold and 20-fold higher expression of COL1A1 and COL10A1 than spheroid pellets on day 21. The encapsulation of hMSC spheroids in THA-Col resulted in an upregulation of chondrogenic-associated markers and GAG content in all hydrogels with differences in cell differentiation related to the Col and THA polymer ratio, while level of hypertrophy was comparable in all groups with values similar to the spheroid pellet group. Spheroids embedded in hydrogels with lower THA content (group 1 and 3) resulted in more pronounced chondrogenic phenotype marked by upregulation of COL2A1 (3’200–4’500-fold) and ACAN (152–179-fold) relative to the respective samples on day 1. Spheroids embedded in higher THA content hydrogels (group 2 and 4) showed less pronounced chondrogenesis marked by lower upregulation of COL2A1 (980–1800-fold) and ACAN (25–68-fold, relative to day 1 samples). This was confirmed by quantification of GAGs, increasing from 2.5±1.9 and 2.5±1.7 mg/ml (day 1) to 11.4±2.5 and 9.9±3.8 mg/ml on day 21 for groups 1 and 4, respectively. (Immuno-) histological stainings resulted in a more homogenous staining in lower THA content hydrogels compared to a more local matrix deposition in samples with higher THA content.

Conclusion

The reduced level of hypertrophy in hMSC pellets prepared from cell spheroids compared to single cell pellets at same cell count might be related to the packing density of the cells with cells being more densely packed in single cell pellets compared to pellets from spheroids. Investigating the effect of polymer ratios on chondrogenesis, it seems that the THA content is the driving factor influencing hMSC chondrogenesis rather than Col content in THA-Col composites at comparable mechanical properties. This study highlights the feasibility to use hMSC spheroids as alternative approach to study in vitro chondrogenic differentiation and the suitability to investigate the effect of biomaterial composition on chondrogenesis and hMSC hypertrophy.


Email: