header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Knee

RADIOLOGICAL AND EARLY CLINICAL OUTCOMES FOLLOWING MANUAL AND ROBOTIC-ASSISTED UNICOMPARTMENTAL KNEE ARTHROPLASTY

The Knee Society (TKS) 2020 Members Meeting, held online, 10–12 September 2020.



Abstract

Introduction

The purpose of this study was to compare the radiographic outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA).

Materials & Methods

Postoperative radiographic outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic center were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiographically measured to identify outliers. Clinical results at 4–6 weeks postoperative were compared to a control cohort of total knee arthroplasty (TKA) patients from our institution.

Results

When assessing the accuracy of RAUKAs, 91.6% of all alignment measurements and 99.2% of all overhang measurements were within the target range. All alignment and overhang targets were simultaneously met in 68.6% of RAUKAs. When comparing radiographic outcomes between the RAUKA and MUKA groups, statistically significant differences were identified for combined outliers in FCA (2.3% vs. 12.6%, p=0.006), FSA (17.4% vs. 50.2%, p<0.001), TCA (5.8% vs. 41.5%, p<0.001), and TSA (8.1% vs. 18.6%, p=0.023), as well as anterior (0.0% vs. 4.7%, p=0.042), posterior (1.2% vs. 13.4%, p=0.001), and medial (1.2% vs. 14.2%, p<0.001) overhang outliers. RAUKA demonstrated statistically significant improvements in pain and outcomes compared to TKA at 4–6 weeks (p<0.05).

Conclusions

Robotic navigation decreases alignment and overhang outliers compared to manual UKA and improves clinical results compare to TKA in the early postoperative period. Given the association between component placement errors and revision in UKA, this strong significant improvement in accuracy is likely to improve implant survival.