header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ACCURACY OF INTRAOPERATIVE PLAIN RADIOGRAPHS COMPARED WITH FLUOROSCOPY IN THE ASSESSMENT OF ACETABULAR PARAMETERS, AND THE EFFECT OF SPINOPELVIC ALIGNMENT WHEN PERFORMING PERIACETABULAR OSTEOTOMIES

The Canadian Orthopaedic Association (COA) and The International Combined Orthopaedic Research Societies (ICORS) Meeting, Montreal, Canada, June 2019. Part 2.



Abstract

During a periacetabular osteotomy (PAO), intra-operative assessment of correction of acetabular parameters is typically performed using fluoroscopy of the hip, a technique that has not been shown to produce predictable measurements. Furthermore, paralysing agents are used in order to facilitate dissection and fragment mobilization. The effect of paralysing agents on spino-pelvic posture is yet to be investigated.

This study aims to: 1. Compare the reliability of intra-operative x-rays versus hip fluoroscopy in the assessment of acetabular fragment correction and 2. Evaluate the effect of changes in spino-pelvic alignment on the assessment of acetabular correction. An IRB approved, retrospective review of all patients who underwent a PAO at our institution between 2006–2018 was performed. Patient demographic data was collected and all available imaging studies were retrieved. Patients were excluded if there was no available to review intra-operative AP pelvis x-ray or intra-operative fluoroscopic PA image of the hip.

Using a validated hip analysis software (Hip2Norm), the lateral center edge angle (LCEA) and acetabular index (AI) of plain radiographs were measured. The sacro-femoral-pubic angle (SFP), along with the LCEA and AI of the fluoroscopic image were measured using ImageJ. A oneway ANOVA was used to detect differences between measured parameters in the intra-operative x-ray, the post-operative x-ray and the fluoroscopic image. A total of 93 patients were identified. 26 patients were excluded due to missing data. The mean LCEA in the post-operative, intra-operative, and fluoroscopic groups were as follows: 33.67° (range 5.3° to 52.4°), 30.71°(range 9° to 55.6°), and 29.23°(range 12.4° to 51.4°) respectively. The mean AI in the post-operative, intra-operative, and fluoroscopic groups were as follows: −0.65° (range −18.10° to 27.30°), 0.35°(range −16.10° to 17.20°), and 5.54°(range −11.66° to 27.83°) respectively.

When comparing intra-operative to post-operative plain radiographs, there was no statistically significant difference in AI (ΔAI −1±1.29° p=0.71) or LCEA (ΔLCEA 2.95±1.38° p=0.09). When comparing fluoroscopy to post-operative plain radiographs, there was a statistically significant difference in AI (ΔAI −6.21±1.29° p < 0 .0001) as well as LCEA (ΔLCEA 4.44±1.38° p < 0 .0001). Statistical analysis revealed no influence of demographics (age, BMI, gender), on acetabular correction parameters. The mean SPF angles measured from intra-operative and post-operative x-rays were 69.32±5.11° and 70.45±5.52°. There was a statistically significant difference between these 2 measurements with a ΔSFP of 1.03° (p < 0 .0001).

The results of our study show that the use of intra-operative x-ray for the assessment of LCEA and AI is more reliable than fluoroscopic images. Further, we found a difference in SFP angle, which offers an indirect assessment of pelvic tilt, between the intra-operative and the post-operative plain x-rays. This suggests that there are changes in pelvic tilt during the surgery, which can be attributed to either patient positioning or changes in spino-pelvic posture secondary to the paralysing agents used by the anesthetists. The use of intra-operative x-rays as well as the effect of paralysing agents on spino-pelvic alignment should be considered by surgeons performing PAO's.


Email: