header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

FAVARD TYPE E2 GLENOID BONE LOSS ORIENTATION

The Canadian Orthopaedic Association (COA) and The International Combined Orthopaedic Research Societies (ICORS) Meeting, Montreal, Canada, June 2019. Part 2.



Abstract

Superiorly eroded glenoids in cuff tear arthropathy represent a surgical challenge for reconstruction. The bone loss orientation and severity may influence glenoid component fixation. This computed-tomography study quantifies both the degree of erosion and orientation in superiorly eroded Favard E2 glenoids. We hypothesized that the erosion in E2 glenoids does not occur purely superiorly, rather, it is oriented in a predictable posterosuperior orientation with a largely semicircular line of erosion.

Three-dimensional reconstructions of 40 shoulders with E2 glenoids (28 female, 12 male patients) at a mean age of 74 years (range, 56–88 years) were created from computed-tomography images. Point coordinates were extracted from each construct to analyze the morphologic structure. The anatomical location of the supra- and infraglenoid tubercle guided the creation of a superoinferior axis, against which the orientation angle of the erosion was measured. The direction and, thus, orientation of erosion was calculated as a vector. By placing ten point coordinates along the line of erosion and creating a circle of best fit, the radius of the circle was placed orthogonally against a chord that resulted by connecting the two outermost points along the line of erosion. To quantify the extent of curvature of the line of erosion between the paleo- and neoglenoid, the length of the radius of the circle of best fit was calculated. Individual values were compared against the mean of circle radii. The area of bony erosion (neoglenoid), was calculated as a percentage of the total glenoid area (neoglenoid + paleoglenoid). The severity of the erosion was categorized as mild (0% to 33%), moderate (34% to 66%), and severe erosion (>66%).

The mean orientation angle between the vector of bony erosion and the superoinferior axis of the glenoid was 47° ± 17° (range, 14° – 74°) located in the posterosuperior quadrant of the glenoid, resulting in the average erosion being directed between the 10 and 11 o'clock position (right shoulder).

In 63% of E2 cases, the line of erosion separating the paleo- and neoglenoids was more curved than the average of all bony erosions in the cohort. The mean surface area of the neoglenoid was 636 ± 247 mm2(range, 233 – 1,333 mm2) and of the paleoglenoid 311 ± 165 mm2(range, 123 – 820 mm2), revealing that, on average, the neoglenoids consume 67% of the total glenoid surface. The extent of erosion of the total cohort was subdivided into one mild (2%), 14 moderate (35%) and 25 severe (62%) cases.

Using a clock-face for orientation, the average orientation of type E2 glenoid defects was directed between the 10 and 11 o'clock position in a right shoulder, corresponding to the posterosuperior glenoid quadrant. Surgeons managing patients with E2 type glenoids should be aware that a superiorly described glenoid erosion is oriented in the posterosuperior quadrant on the glenoid clock-face when viewed intra-operatively. Additionally, the line of erosion in 63% of E2 glenoids is substantially curved, having a significant effect on bone removal techniques when using commercially available augments for defect reconstruction.


Email: