header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DENSITY DISTRIBUTION ANALYSIS OF THE E2-TYPE GLENOID

The Canadian Orthopaedic Association (COA) and The International Combined Orthopaedic Research Societies (ICORS) Meeting, Montreal, Canada, June 2019.



Abstract

This study examined the regional variations of cortical and cancellous bone density present in superiorly eroded glenoids. It is hypothesized that eroded regions will contain denser bone in response to localized stress. The shift in natural joint articulation may also cause bone resorption in areas opposite the erosion site.

Clinical CT scans were obtained for 32 shoulders (10m/22f, mean age 72.9yrs, 56–88yrs) classified as having E2-type glenoid erosion. The glenoid was divided into four measurement regions - anterior, inferior, posterior, and superior - as well as five depth regions. Depth regions were segmented in two-millimeter increments from zero to 10 millimeters, beginning at the center of the glenoid surface. A repeated-measures multiple analysis of variance (RM-MANOVA) was performed using SPSS statistical software to look for differences and interactions between mean densities in each depth, quadrant, and between genders. A second RM-MANOVA was performed to examine effects of gender and quadrant on cortical to cancellous bone volume ratios. Significance was set at p < 0 .05.

Quadrant and depth variables showed significant multivariate main effects (p 0.147 respectively). Quadrant, depth, and their interaction showed significant univariate main effects for cortical bone (p≤0.001) and cancellous bone (p < 0 .001). The lowest bone density was found to be in the inferior quadrant for cancellous bone (307±50 HU, p < 0 .001). The superior quadrant contained the highest mean density for cortical bone (895±97 HU), however it was only significantly different than in the posterior quadrant (865±97 HU, p=0.022). As for depth, it was found that cortical bone is most dense at the glenoid surface (zero to two millimeters, 892±91 HU) when compared to bone at two to eight millimeters in depth (p < 0 .02). Cancellous bone was also most dense at the surface (352±51 HU), but only compared to the eight to 10 millimeters depth (p=0.005). Cancellous bone density was found to decrease with increasing depth. For cortical-to-cancellous bone volume ratios, the inferior quadrant (0.37±0.28) had a significantly lower ratio than all other quadrants (p < 0 .001)

The superoposterior region of the glenoid was found to have denser cancellous bone and a high ratio of cortical to cancellous bone, likely due to decreased formation of cancellous bone and increased formation of cortical bone, in response to localized stresses. The inferior quadrant was found to have the least dense cortical and cancellous bone, and the lowest volume of cortical bone relative to cancellous bone. Once again, this is likely due to reduction in microstrain responsible for bone adaptation via Wolff's law. The density values found in this study generally agree with the range of values found in previous studies of normal and arthritic glenoids. An important limitation of this study is the sizing of measurement regions. For a patient with a smaller glenoid, a depth measurement of two millimeters may represent a larger portion of the overall glenoid vault. Segments could be scaled for each patient based on a percentage of each individual's glenoid size.


Email: