header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DOES HEMIARTHROPLASTY IMPLANT COMPLIANCE AFFECT EARLY IN VITRO CARTILAGE WEAR AND JOINT CONTACT MECHANICS?

The Canadian Orthopaedic Association (COA) and The International Combined Orthopaedic Research Societies (ICORS) Meeting, Montreal, Canada, June 2019.



Abstract

Joint hemiarthroplasty replaces one side of a synovial joint and is a viable alternative to total joint arthroplasty when one side of the joint remains healthy. Most hemiarthroplasty implants used in current clinical practice are made from stiff materials such as cobalt chrome or ceramic. The substitution of one side of a soft cartilage-on-cartilage articulation with a rigid implant often leads to damage of the opposing articular cartilage due to the resulting reductions in contact area and increases in cartilage stress. The improvement of post-operative hemiarthroplasty articular contact mechanics is of importance in advancing the performance and longevity of hemiarthroplasty. The purpose of the present study was to investigate the effect of hemiarthroplasty surface compliance on early in-vitro cartilage wear and joint contact mechanics.

Cartilage wear tests were conducted using a six-station pin-on-plate apparatus. Pins were manufactured to have a hemispherical radius of curvature of 4.7 mm using either Bionate (DSM Biomedical) having varying compliances (80A [E=20MPa], 55D [E=35MPa], 75D [E=222MPa], n=6 for each), or ceramic (E=310GPa, n=5). Cartilage plugs were cored from fresh unfrozen bovine knee joints using a 20 mm hole saw and mounted in lubricant-containing chambers, with alpha calf serum diluted with phosphate buffer solution to a protein concentration of 17 g/L. The pins were loaded to 30N and given a stroke length of 10 mm for a total of 50,000 cycles at 1.2 Hz. Volumetric cartilage wear was assessed by comparing three-dimensional cartilage scans before and during wear testing. A two-way ANOVA was used for statistical analysis. To assess hemiarthroplasty joint contact mechanics, 3D finite element modelling (ABAQUS v6.12) was used to replicate the wear testing conditions. Cartilage was modeled using neo-Hookean hyper-elastic material properties. Contact area and peak contact stress were estimated.

The more compliant Bionate 80A and 55D pins produced significantly less volumetric cartilage wear compared with the less compliant Bionate 75D and ceramic pins (p 0.05). In terms of joint contact mechanics, the more compliant materials (Bionate 80A and 55D) had significantly lower maximum contact stress levels compared to the less compliant Bionate 75D and ceramic pins (p < 0 .05).

The results of this study show a relationship between hemiarthroplasty implant surface compliance and early in vitro cartilage wear, where the more compliant surfaces produced significantly lower amounts of cartilage wear. The results of the joint contact mechanics analysis showed that the more compliant hemiarthroplasty materials produced lower maximum cartilage contact stresses than the less compliant materials, likely related to the differences in wear observed. More compliant hemiarthroplasty surfaces may have the potential to improve post-operative cartilage contact mechanics by increasing the implant-cartilage contact area while reducing peak contact stress at the implant-cartilage interface, however, such materials must be resistant to surface fatigue and longer-term cartilage wear/damage must be assessed.


Email: