header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DETERMINING THE IMPACT HIP FEMORAL STEM DESIGN HAS ON SUBSIDENCE AND PATIENT ACTIVITY FOR PATIENTS UNDERGOING PRIMARY UNILATERAL TOTAL HIP ARTHROPLASTY

The Canadian Orthopaedic Association (COA) and The International Combined Orthopaedic Research Societies (ICORS) Meeting, Montreal, Canada, June 2019.



Abstract

Increasing pressure to use rapid recovery care pathways when treating patients undergoing total hip arthroplasty (THA) is evident in current health care systems for numerous reasons. Patient autonomy and health care economics has challenged the ability of THA implants to maintain functional integrity before achieving bony union. Although collared stems have been shown to provide improved axial stability, it is unclear if this stability correlates with activity levels or results in improved early function to patients compared to collarless stems. This study aims to examine the role of implant design on patient activity and implant fixation. The early follow-up period was examined as the majority of variation between implants is expected during this time-frame.

Patients (n=100) with unilateral hip OA who were undergoing primary THA surgery were recruited pre-operatively to participate in this prospective randomized controlled trial. All patients were randomized to receive either a collared (n=50) or collarless (n=50) cementless femoral stem. Patients will be seen at nine appointments (pre-operative, < 2 4 hours post-operation, two-, four-, six-weeks, three-, six-months, one-, and two-years). Patients completed an instrumented timed up-and-go (TUG) test using wearable sensors at each visit, excluding the day of their surgery. Participants logged their steps using Fitbit activity trackers and a seven-day average prior to each visit was recorded. Patients also underwent supine radiostereometric analysis (RSA) imaging < 2 4 hours post-operation prior to leaving the hospital, and at all follow-up appointments.

Nineteen collared stem patients and 20 collarless stem patients have been assessed. There were no demographic differences between groups. From < 2 4 hours to two weeks the collared implant subsided 0.90 ± 1.20 mm and the collarless implant subsided 3.32 ± 3.10 mm (p=0.014). From two weeks to three months the collared implant subsided 0.65 ± 1.54 mm and the collarless implant subsided 0.45 ± 0.52 mm (p=0.673). Subsidence following two weeks was lower than prior to two weeks in the collarless group (p=0.02) but not different in the collared group. Step count was reduced at two weeks compared to pre-operatively by 4078 ± 2959 steps for collared patients and 4282 ± 3187 steps for collarless patients (p=0.872). Step count increased from two weeks to three months by 6652 ± 4822 steps for collared patients and 4557 ± 2636 steps for collarless patients (p=0.289). TUG test time was increased at two weeks compared to pre-operatively by 4.71 ± 5.13 s for collared patients and 6.54 ± 10.18 s for collarless patients (p=0.551). TUG test time decreased from two weeks to three months by 7.21 ± 5.56 s for collared patients and 8.38 ± 7.20 s for collarless patients (p=0.685). There was no correlation between subsidence and step count or TUG test time.

Collared implants subsided less in the first two weeks compared to collarless implants but subsequent subsidence after two weeks was not significantly different. The presence of a collar on the stem did not affect patient activity and function and these factors were not correlated to subsidence, suggesting that initial fixation is instead primarily related to implant design.


Email: