header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

FINITE ELEMENT MODELS CAN AID IN IDENTIFYING SUITABLE PATIENTS FOR FEMOROPLASTY OF METASTATIC LESIONS

The 28th Annual Meeting of the European Orthopaedic Research Society (EORS), held online, 17–18 September 2020.



Abstract

Prophylactic treatment is advised for metastatic bone disease patients with a high risk of fracture. Clinicians face the task of identifying these patients with high fracture risk and determining the optimal surgical treatment method. Subject-specific finite element (FE) models can aid in this decision process by predicting the mechanical effect of surgical treatment. In this study, we specifically evaluated the potential of FE models to simulate femoroplasty, as uncertainty remains whether this prophylactic procedure provides sufficient mechanical strengthening to the weight-bearing femur.

In eight pairs of human cadaveric femurs artificial metastatic lesions were created. In each pair, an identical defect was milled in the left and right femur. Four pairs received a spherical lesion in the neck and the other four an ellipsoidal lesion in the intertrochanteric region, each at the medial, superior/lateral, anterior and posterior side, respectively. One femur of each pair was augmented with polymethylmethacrylate (5–10 ml), while the contralateral femur was left untreated. CT scans were made at three different time points: from the unaffected intact femurs, the defect femurs with lesion and the augmented femurs. Bone strength was measured by mechanical testing until failure in eight defect and eight augmented femurs. Nonlinear CT-based FE models were developed and validated against the experimentally measured bone strength. Subsequently, the validated FE model was applied to the available CT scans for the three different cases: intact (16 scans), defect (16) and augmented (8). The FE predicted strength was compared for the three different cases.

The FE models predicted the experimental bone strength with a strong correspondence, both for the defect (R2 = 0.97, RMSE= 0.75 kN) and the augmented femurs (R2 = 0.90, RMSE = 0.98 kN). Although all lesions had a “moderate” to “high” risk for fracture according to the Mirels’ scoring system (score 7 or 8), three defect femurs did not fracture through the lesion (intertrochanteric anterior, lateral and posterior), indicating that these lesions did not act as a critical weak spot. In accordance with the experimental findings, the FE models indicated almost no reduction in strength between the intact and defect state for these femurs (0.02 ± 0.1%). For the remaining “critical” lesions, bone strength was reduced with 15.7% (± 14.9%) on average. The largest reduction was observed for lesions on the medial side (up to 43.1%). For the femurs with critical lesions, augmentation increased bone strength with 29.5% (± 29.7%) as compared to the defect cases, reaching strength values that were 2.5% (± 3.7%) higher than the intact bone strength.

Our findings demonstrate that FE models can accurately predict the experimental bone strength before and after augmentation, thereby enabling to quantify the mechanical benefit of femoroplasty. This way FE models could aid in identifying suitable patients for whom femoroplasty provides sufficient increase in strength. For all lesions evaluated in this study, femoroplasty effectively restored the initial bone strength. Yet, additional studies on larger datasets with a wide variation of lesion types are required to confirm these results.