header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DOES PROSTHETIC OR BONY IMPINGEMENT OCCUR MORE OFTEN IN TOTAL HIP ARTHROPLASTY?

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Introduction

Instability continues to be the number one reason for revision in primary total hip arthroplasty (THA). Commonly, impingement precedes dislocation, inducing a levering out the prosthetic head from the liner. Impingement can be prosthetic, bony or soft tissue, depending on component positioning and anatomy. The aim of this virtual study was to investigate whether bony or prosthetic impingement occurred first in well positioned THAs, with the hip placed in deep flexion and hyperextension.

Methods

Twenty-three patients requiring THA were planned for a TriFit/Trinity ceramic-on-poly cementless construct using the OPSTM dynamic planning software (Corin, UK). The cups were sized to best fit the anatomy, medialised to sit on the acetabular fossa and orientated at 45° inclination and 25° anteversion when standing. Femoral components and head lengths were then positioned to reproduce the native anteversion and match the contralateral leg length and offset. The planned constructs were flexed and internally rotated until anterior impingement occurred in deep flexion [Fig. 1]. The type (bony or prosthetic), and location, of impingement was then recorded. Similarly, the hips were extended and externally rotated until posterior impingement occurred, and the type and location of impingement recorded [Fig. 2]. Patients with minimal pre-operative osteophyte were selected as a best-case scenario for bony impingement.

Results

6/23 (26%) patients were planned with only a 32mm articulation (<50mm cup size), with the remaining 17 patients all planned with both 32mm and 36mm articulations (≥50mm cup size).

Anterior impingement was 26% prosthetic and 74% bony with the 32mm articulations, and 100% bony with the 36mm articulations. Bony impingement in deep flexion was exclusively anterior neck on anterior inferior iliac spine.

Posterior impingement was 57% prosthetic and 43% bony with the 32mm articulations, and 41% prosthetic and 59% bony with the 36mm articulations. Bony impingement in hyperextension was exclusively lesser trochanter (LT) on ischium.

Of the patients planned with both 32mm and 36mm articulations, there was a 14% increase in prosthetic impingement when a 32mm head was planned (35% and 21% respectively).

Discussion

Impingement in THA usually precedes dislocation and should be avoided with appropriate component positioning. We found that in hyperextension, prosthetic and bony impingement were equally common. In deep flexion, impingement was almost exclusively bony. Further studies should investigate the effects of stem version, cup orientation, liner design, cup depth, native offset and retained osteophytes on the type of impingement in THA.

For any figures or tables, please contact the authors directly.