header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DOES HIP FEMORAL STEM DESIGN IMPACT IMPLANT MIGRATION AND PATIENT RECOVERY FOLLOWING A PRIMARY DIRECT ANTERIOR TOTAL HIP ARTHROPLASTY?

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Background

There is increasing impetus to use rapid recovery care pathways when treating patients undergoing total hip arthroplasty (THA). The direct anterior (DA) approach is a muscle sparing technique that is believed to support these new pathways. Implants designed for these approaches are available in both collared and collarless variations and understanding the impact each has is important for providing the best treatment to patients.

Purpose/Aim of Study

This study aims to examine the role of implant design on implant fixation and patient recovery.

Materials and Methods

Patients (n=50) with unilateral hip OA who were undergoing primary DA THA surgery were recruited pre-operatively to participate in this prospective randomized controlled trial. All patients were randomized to receive either a collared (n=25) or collarless (n=25) cementless, fully hydroxyapatite coated femoral stem. Patients were seen at nine appointments (pre-operative, <24 hours post-operation, two-, four-, six-weeks, three-, six-months, one-, and two-years). Patients underwent supine radiostereometric analysis (RSA) imaging <24 hours post-operation prior to leaving the hospital, and at all follow-up appointments. Patients also completed an instrumented timed up-and-go (TUG) test using wearable sensors at each visit, excluding the day of their surgery. Participants logged their steps using Fitbit activity trackers and a seven-day average prior to each visit was recorded.

Findings/Results

Twenty-two patients that received a collared stem and 27 patients that received a collarless stem have been assessed. There were no demographic differences between groups. From <24 hours to two weeks the collared implants subsided 0.90 ± 1.20 mm and the collarless implants subsided 3.80 ± 3.37 mm (p=0.001). From two weeks to three months the collared implants subsided 0.67 ± 1.61 mm and the collarless implants subsided 0.45 ± 0.46 mm (p=0.377). Step count was reduced at two weeks to 3108 ± 1388 steps for collared patients and 2340 ± 1685 steps for collarless patients (p=0.072). Step count was increased at three months to 8939 ± 3494 steps for collared patients and 6114 ± 2529 steps for collarless patients (p=0.034). TUG test time was increased at two weeks compared to pre-operatively by 3.45 ± 6.01 s for collared patients and 2.29 ± 4.92 s for collarless patients (p=0.754). TUG test time decreased from two weeks to three months by 6.30 ± 6.05 s for collared patients and 5.68 ± 4.68 s for collarless patients (p=0.922).

Conclusions

Collared implants subsided less in the first two weeks compared to collarless implants but subsequent subsidence after two weeks was not significantly different. Presence of a collar on the stem impacted patient activity but not function. This suggests that both the implant design as well as the surgical technique may play a role in the patient's early post-operative experience.