header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

COMPARISON OF CYCLIC IMPINGEMENT RESISTANCE IN FIRST- AND SECOND-GENERATION HIGHLY CROSSLINKED POLYETHYLENE LATERAL OFFSET ACETABULAR COMPONENTS

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Introduction

Highly crosslinked, ultra-high molecular weight polyethylene (HXLPE) acetabular liners inherently have a risk of fatigue failure associated with femoral neck impingement. One of the potential reasons for liner failure was reported as crosslinking formulations of polyethylene, increasing the brittleness and structural rigidity. In addition, the acetabular component designs greatly affect the mechanical loading scenario, such as the offset (lateralized) liners with protruded rim above the metal shells, which commonly induce a weak resistance to rim impingement. The purpose of the present study was to compare the influence of the liner offset length on the impingement resistance in the annealed (first generation) and vitamin E-blended (second-generation) HXLPE liners with a commercial design.

Materials and Methods

The materials tested were the 95-kGy irradiated annealed GUR1020, and the 300-kGy irradiated vitamin E-blended GUR1050 HXLPE offset liners, which were referred to as “20_95” and “50E_300”, respectively. These liners had 2, 3, 4-mm rim offset, 2.45-mm rim thickness, and 36-mm internal diameter. Their rims were protruded above the metal rim at 2, 3, 4mm. Rim impingement testing was performed using an electrodynamic axial-torsional machine. The cyclic impingement load of 25–250N was applied on the rims through the necks of the femoral stems at 1Hz. The rotational torque was simultaneously generated by swinging the stem necks on the rims at 1Hz and its rotational angle was set at the range of 0–10˚. The percent crystallinity was analyzed on the as-received (intact) and impinged HXLPE acetabular rims by confocal Raman microspectroscopy.

Results

The number of cycles to failure was dependent on the offset length (2, 3, 4-mm) in 20_95 and 50E_300 liners. Our results showed that the shorter the rim offset, the shorter the number of cycles to failure. In both HXLPEs, accumulation of impingement damages significantly decreased crystallinity in their near-surfaces, indicating the occurrence of crystallographic breakdown. In each offset length tested, the fracture always occurred much earlier in 50E_300 than 20_95. However, the magnitudes of the microstructural changes at the time of failure were much less in 50E_300 than 20_95.

Conclusions

Although it is known that vitamin E blend into HXLPE can improve the fatigue resistance of HXLPE, the impingement resistance of 50E_300 was lower than vitamin-E free 20_95, indicating a larger negative contribution of high-dose radiation (300kGy) over a positive contribution of the vitamin E blend in 50E_300. Our results implied that the reduction of the protruded rim length in the offset liners may increase the neck-rim contact stresses at the time of impingement, causing a decrease in the fatigue durability. Therefore, if HXLPE offset liner is used, surgeons should take special care in maximizing the volume of the protruded lip section.