header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

GAP IMBALANCES CREATED BY MECHANICALLY ALIGNED TOTAL KNEE ARTHROPLASTY ARE SIGNIFICANTLY REDUCED USING RESTRICTED KINEMATIC ALIGNMENT

International Society for Technology in Arthroplasty (ISTA) meeting, 32nd Annual Congress, Toronto, Canada, October 2019. Part 1 of 2.



Abstract

Background

Mechanical alignment (MA) techniques for total knee arthroplasty (TKA) introduce significant anatomic modifications and secondary ligament imbalances. A restricted kinematic alignment (rKA) protocol was proposed to minimize these issues and improve TKA clinical results.

Method

rKA tibial and femoral bone resections were simulated on 1000 knee CT-Scans from a database of patients undergoing TKA. rKA is defined by the following criteria: Independent tibial and femoral cuts within ± 5° of the bone neutral mechanical axis and; a resulting HKA within ±3° of neutral. Medial-lateral (ΔML) and flexion-extension (ΔFE) gap differences were calculated and compared with measured resection MA results.

Results

Extension space ML imbalances ≥3mm occurred in 33% of TKA with MA technique versus 8% with rKA, and ≥5mm were present in up to 11% of MA knees versus 1% rKA (p<0.001). Using the MA technique, for the flexion space, higher ML imbalance rates were created by both MA techniques (using TEA or 3°PC) versus rKA (p<0.001). When all the differences between ΔML and ΔFE are considered together: using MA with TEA there were 41% of the knees with <3mm imbalances throughout; using PC this was 55% and using rKA it was 92% (p<0.001).

Conclusion

Significantly less ML or FE gap imbalances are created using rKA versus MA for TKA. Using rKA may help the surgeon to preserve native knee ligament balance during TKA and avoid residual instability, whilst keeping the lower limb alignment within a safe range.