header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

A ROBOTIC, BICRUCIATE-RETAINING TOTAL KNEE ARTHROPLASTY: THE SHAPE OF THINGS TO COME

The Current Concepts in Joint Replacement (CCJR) Spring 2018 Meeting, Las Vegas, NV, USA, 20–23 May 2018.



Abstract

The goals of a total knee arthroplasty include approximation of the function of a normal knee and achievement of balance post-surgery. Accurate bone preparation and the preservation of natural ligaments along with a functional knee design, holds the potential to provide a method of restoring close to normal function.

Although conventional knee arthroplasty is considered a successful intervention for end-stage osteoarthritis, some patients still experience reduced functionality and in some cases, require revision procedures. With conventional manual techniques, accurate alignment of the tibial component has been difficult to achieve. Even in the hands of skilled knee surgeons, outliers beyond 2 degrees of the desired alignment may occur in as many as 40%-60% of cases using conventional methods, and the range of component alignment varies considerably.

Similarly, for total knee replacement outliers beyond 2 degrees of the desired alignment may occur in as many as 15% of cases in the coronal plane, going up to 40% of unsatisfactory alignment in the sagittal plane.

Robotics-assisted arthroplasty has gained increasing popularity as orthopaedic surgeons aim to increase accuracy and precision of implant positioning. With advances in computer generated data, with image free data, surgeons have the ability to better predict and influence surgical outcomes. Based on planned implant position and soft tissue considerations, robotics-assisted systems can provide surgeons with virtual tools to make informed decisions for knee replacement, specific to the needs of the patient.

Here, for the first time in a live surgical setting, we assess the accuracy and technique of a novel imageless semiautonomous handheld robotic surgical technique in bi-cruciate retaining total knee arthroplasty (Navio, Smith and Nephew). The system supports image-free anatomic data collection, intraoperative surgical planning and execution of the plan using a combination of robotic burring and saw cut guides.