header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DIAGNOSIS OF INFECTION: NEW TESTS AND TECHNIQUES

The Current Concepts in Joint Replacement (CCJR) Spring 2018 Meeting, Las Vegas, NV, USA, 20–23 May 2018.



Abstract

The number of shoulder arthroplasty procedures performed in the United States continues to rise. Currently, the number of procedures performed per year ranges from 55,000–80,000 and is expected to increase more than 300% in the coming years. Periprosthetic joint infection (PJI) is one of the most serious complications associated with arthroplasty surgery, leading to poor outcomes, increased cost, and technically difficult revision surgery. The incidence of infection following primary shoulder arthroplasty has been reported between 0.7% and 4%, representing 2.9–4.6% of all complications.

Prosthetic shoulder joint infections are unlike prosthetic joint infections of the hip and knee. Shoulder PJIs are primarily indolent in nature and difficult to diagnose using traditional methods that have been shown to be accurate for periprosthetic infections of the hip and knee. The majority of infected revision shoulder arthroplasties are associated with growth of Propionibacterium acnes (P. Acnes). This slow-growing, anaerobic organism requires longer than normal incubation times for culture (7–21 days), and typically demonstrates a subtle, non-specific clinical presentation that can make the presence of infection difficult to identify. In the reported literature, P. Acnes accounts for about 70% of cases with positive cultures associated with revision for treatment of a painful shoulder arthroplasty and due to the bacteria's slow growing nature and virulence profile, the rate of infection following shoulder arthroplasty may often be underestimated.

A more recent and promising tool for evaluation of periprosthetic infection has been analysis of synovial fluid. Synovial fluid biomarkers have been identified as part of the innate response to pathogens, and include pro-inflammatory cytokines and anti-microbial peptides, and marker levels have shown promise for improved diagnostic efficacy in hip and knee PJI. Currently, no highly predictive clinical test for diagnosis of PJI in the shoulder exists, however, several of these synovial biomarkers have recently been analyzed for their diagnostic capacity in the setting of periprosthetic shoulder infection.

Synovial fluid cytokine analysis shows the potential to improve diagnosis of infection in revision shoulder arthroplasty. This information can help to guide decision-making in the management of PJI of the shoulder, including the decision to perform a single- vs. two-stage revision surgery, and the need for post-operative antibiotics following an unexpected positive culture result after revision surgery. However, there are still challenges to broader use of these synovial biomarkers. Synovial α-defensin (Synovsure, CD Diagnostic) is the only marker currently available as a commercial test, and no point-of-care test is currently available for any of the biomarkers to allow for intraoperative decision-making. While a preoperative synovial aspirate is possible to send for α-defensin analysis currently, with results back in approximately 24 hours, dry fluid aspirations are frequent in the shoulder because of the predominance of indolent pathogens and may limit utility of the test.

In summary, indolent infection associated with P. acnes is a common cause for the painful total shoulder arthroplasty. Pre-operative diagnosis of infection is difficult as a result of the poor diagnostic accuracy of traditional methods of testing. Synovial biomarker testing may ultimately improve our ability to more accurately diagnosis and treat prosthetic shoulder joint infections.