header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

FRETTING-INDUCED METALLURGICAL TRANSFORMATIONS IN TI6AL4V ALLOY: FROM CRYSTALLINE TO AMORPHOUS

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 2.



Abstract

Introduction

Titanium and its alloys are attractive biomaterials attributable to their desirable corrosion, mechanical, biocompatibility and osseointegration properties. Ti6Al4V alloy in particular remains a prominent biomaterial used in Total Hip Arthroplasty (THA) today. This is partly due to biocompatibility and stress shielding issues with CoCrMo alloys, resulting in its increasing side-lining from the THA construct. For several decades now, research efforts have been dedicated to understanding wear, corrosion and surface degradation processes in implant materials. Only recently have researchers shown interest in understanding the subsurface implications of fretting and the role it plays on implant fracture. The purpose of this study was to utilise advanced microscopy and spectroscopy techniques to characterise fretting-induced subsurface transformations in Ti6Al4V. This makes mapping specific regions that are most prone to wear and fatigue failures at the modular taper interface of THA probable. Thus, informing a proactive approach to component design and material selection.

Method

A ball-on-flat configuration was utilised in this study to achieve a Hertzian point contact for a CoCrMo – Ti6Al4V material combination. Four fretting displacement amplitudes were assessed: ±10, ±25, ±50 and ±150 µm. An initial contact pressure of 1 GPa was used for all fretting tests in this study and each fretting test lasted 6000 cycles at a frequency of 1 Hz. The simulated physiological solution consisted of Foetal Bovine Serum (FBS) diluted to 25% with Phosphate Buffered Saline (PBS) and 0.03% Sodium Azide (SA) balance. The temperature was kept at ∼37°C. Subsurface transformations in the Ti6Al4V alloy was characterised using the Transmission Electron Microscopy (TEM) to obtain high resolution micrographs. The samples were prepared using a FIB-SEM. Bright-field, dark-field and selected area electron diffraction (SAED) patterns were all captured using a scanning TEM (STEM) and Energy Dispersed X-Ray spectroscopy (EDX) mapping was carried out.

Results

At both ±10 and ±25 µm displacement, a stick fretting regime was realised. Subsurface transformation in the Ti6Al4V alloy was characterised as strain-induced orientation. At ±50 µm, a mixed fretting regime was realised, TEM and SAED micrographs as well as EDX spectroscopy identified complex but distinctive structures at the surface and subsurface of the Ti6Al4V alloy. This included a CoCrMo-rich fine particulate, mechanically mixed structure, an amorphous-transformed Ti6Al4V structure and a highly refined nano-crystalline Ti6Al4V structure. At ±150 µm, a full gross slip regime was realised and Ti6Al4V alloy was characterised mainly by subsurface cracks, formation and refinement of nano-crystalline structures.

Conclusion

The degree of subsurface recrystallization within Ti6Al4V alloy was observed to be energy dependent. However, the manifestation of the dissipated energy was dependent on the contact condition. The interwoven relationship between energy dissipation, contact condition and mechanisms of clinical failure in Ti6Al4V was consolidated into a map (Figure 1). The map is intended to provide users with an indication of the failure modes to expect for an implant material subjected to specific tribocorrosion conditions.

For any figures or tables, please contact the authors directly.