header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DEPENDENCE OF TIBIAL POST CONTACT FORCES IN POSTERIOR-STABILIZED TOTAL KNEE ARTHROPLASTY ON IMPLANT DESIGN, ALIGNMENT AND ACTIVITY

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 2.



Abstract

Posterior stabilized (PS) total knee arthroplasty (TKA), wherein mechanical engagement of the femoral cam and tibial post prevents abnormal anterior sliding of the knee, is a proven surgical technique. However, many patients complain about abnormal clicking sensation, and several reports of severe wear and catastrophic failure of the tibial post have been published. In addition to posterior cam-post engagement during flexion, anterior engagement with femoral intercondylar notch can also occur during extension. The goal of this study was to use dynamic simulations to explore sensitivity of tibial post loading to implant design and alignment, across different activities.

LifeModeler KneeSIM software was used to calculate tibial post contact forces for four contemporary PS implants (Triathlon PS, Stryker; Journey BCS and Legion PS, Smith & Nephew; LPS Flex, Zimmer Biomet). An average model of the knee, including cartilage and soft tissue insertion locations, created from MRI data of 40 knees was used to mount and align the component. The Triathlon femoral component was mounted with posterior and distal condylar tangency at: a) both medial and lateral condylar cartilage (anatomic alignment), b) at the medial condylar cartilage and perpendicular to mechanical axis (mechanical alignment with medial tangency), and c) at lateral condylar cartilage and perpendicular to mechanical axis (mechanical alignment with lateral tangency). The influence of implant design was assessed via simulations for the other implant systems with the femoral components aligned perpendicular to mechanical axis with lateral tangency. Five different activities were simulated.

The anterior contact force was significantly smaller than the posterior contact force, but it varied noticeably with tibial insert slope and implant design. For Triathlon PS, during most activities anatomic alignment of the femoral component resulted in greater anterior contact force compared to mechanical alignment, but absolute magnitude of forces remained small (<100N). Mechanical alignment with medial tangency resulted in greater posterior contact force for deep knee bend and greater anterior force for chair sit activity. For all implants, peak posterior contact forces were greater for activities with greater peak knee flexion. The magnitude of posterior contact forces for the various implants was comparable to other reports in literature. Overall activity type, implant design and slope had greater impact on post loading than alignment method.

Tibial insert slope was shown to be important for anterior post loading, but not for posterior post loading. Anatomic alignment could increase post loading with contemporary TKA systems. In the case of the specific design for which effect of alignment was evaluated, the changes in force magnitude with alignment were modest (<200N). Nonetheless, results of this study highlight the importance of evaluating the effect of different alignment approaches on tibial post loading.