header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

COMPROMISE IN BONE DENSITY RESULTS IN AMPLIFIED CEMENT LAYER STRESS IN HIP RESURFACING ARTHROPLASTY

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 2.



Abstract

As an alternative to total hip arthroplasty (THA), hip resurfacing arthroplasty (HRA) provides the advantage of retaining bone stock. However, femoral component loosening and femoral neck fracture continue to be leading causes of revision in HRA. Surgical technique including cementation method and bone preparation, and patient selection are known to be important for fixation. This study was designed to understand if and to what extent compromise in bone quality and the presence of cysts in the proximal femur contribute to resurfacing component loosening.

A finite element (FE) model of a proximal femur was used to calculate the stress in the cement layer. Bone density to Young's modulus relationship was used to calibrate the bone stiffness in the model using computed tomography. A contemporary resurfacing implant (BHR, Smith & Nephew) was used in the FE model. The effect of reduced bone quality (35% reduction relative to normal baseline; osteoporosis threshold) and presence of cysts on stress in the bone cement layer was then assessed using the same FE model. The center of the cyst (a localized spherical cavity 1 cm in diameter) was located directly under the contact patch. Simulations were run with two locations of the center of the cyst, on the surface of the resected bone and 1 cm below it. The surface cyst was filled with bone cement, but the inner cyst was empty. The contact force and location for the model were obtained from instrumented implant studies. Simulations were run representing the peak loads during two activities, jogging and stand-up from seated position.

While density reduction of the bone reduced the stress in the CoCr femoral head, the Von-Mises stress in the cement layer was amplified. The peak Von-Mises stress in the cement layer under the contact patch increased more than six times for the jogging activity, and more than ten times for the stand-up activity, relative to values for normal bone density. The impact of cysts on the cement layer stress or the strain distributions in the bone were minimal.

The results show a greater risk of failure of the cement layer under conditions of reduced bone density. In contrast cement stresses and bone strains appeared to be relatively immune to a surface cyst filled with bone cement or an empty inner cyst. Contraindications of hip resurfacing include severe osteopenia and multiple cysts of the femoral head, however no strict or quantitative criteria exist to guide patient selection. Research similar to the one presented herein, maybe key to developing better patient selection criteria to reduce risk associated with compromised femoral head fixation.