header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

KINEMATIC ASSESSMENT OF ANATOMICAL COMPARTMENT-SPECIFIC PARTIAL KNEE ARTHROPLASTY

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 2.



Abstract

Introduction

Partial knee arthroplasty (PKA) has demonstrated the potential to improve patient satisfaction over total knee arthroplasty. It is however perceived as a more challenging procedure that requires precise adaptation to the complex mechanics of the knee. A recently developed PKA system aims to address these challenges by anatomical, compartment specific shapes and fine-tuned mechanical instrumentation. We investigated how closely this PKA system replicates the balance and kinematics of the intact knee.

Materials and Methods

Eight post-mortem human knee specimens (age: 55±11 years, BMI: 23±5, 4 male, 4 female) underwent full leg CT scanning and comprehensive robotic (KUKA KR140 comp) assessments of tibiofemoral and patellofemoral kinematics. Specimens were tested in the intact state and after fixed bearing medial PKA. Implantations were performed by two experienced surgeons.

Assessments included laxity testing (anterior-posterior: ±100 N, medial-lateral: ±100 N, internal-external: ±3 Nm, varus- valgus: ±12 Nm) under 2 compressive loads (44 N, 500 N) at 7 flexion angles and simulations of level walking, lunge and stair descent based on in-vivo loading profiles. Kinematics were tracked robotically and optically (OptiTrack) and represented by the femoral flexion facet center (FFC) motions. Similarity between intact and operated curves was expressed by the root mean square of deviations (RMSD) along the curves. Group data were summarized by average and standard deviation and compared using the paired Student's T-test (α = 0.05).

Results

During the varus-valgus balancing assessment the medial and lateral opening of the PKAs closely resembled the intact openings across the full arch of flexion, with RMSD values of 1.0±0.5 mm and 0.4±0.2 mm respectively. The medial opening was nearly constant across flexion, its average was not statistically different between intact (3.8±1.0 mm) and PKA (4.0±1.1 mm) (p=0.49).

Antero-posterior envelope of motion assessments revealed a close match between the intact and PKA group for both compression levels. Net rollback was not statistically different, either under low compression (intact: 10.9±1.5 mm, PKA: 10.7±1.2, p=0.64) or under high compression (intact: 13.2±2.3 mm, PKA: 13.0±1.6 mm, p=0.77). Similarly, average laxity was not statistically different, either under low (intact: 7.7±3.2 mm, PKA: 8.6±2.5 mm, p=0.09) or under high (intact: 7.2±2.6 mm, PKA: 7.8±2.2 mm, p=0.08) compression.

Activities of daily living exhibited a close match in the anterior-posterior motion profile of the medial condyle (RMSD: lunge: 2.2±1.0 mm, level walking: 2.4±0.9 mm, stair descent: 2.2±0.6 mm) and lateral condyle (RMSD: lunge: 2.4±1.4 mm, level walking: 2.2±1.4 mm, stair descent: 2.7±2.0 mm). Patellar medial-lateral tilt (RMSD: 3.4±3.8°) and medial-lateral shift (RMDS: 1.5±0.6 mm) during knee flexion matched closely between groups.

Conclusion

Throughout the comprehensive functional assessments the investigated PKA system behaved nearly identical to the intact knee. The small residuals are unlikely to have a clinical effect; further studies are necessary as cadaveric studies are not necessarily indicative of clinical results. We conclude that PKA with anatomical, compartment specific shapes and fine-tuned mechanical instrumentation can be adapted precisely to the complex mechanics of the knee and replicates intact knee balance and kinematics very closely.