header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DOES A DIFFERENCE IN THE ROTATIONAL POSITION OF THE LIGAMENT BALANCER AFFECT MEDIAL AND LATERAL SOFT-TISSUE BALANCE IN TOTAL KNEE ARTHROPLASTY?

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 2.



Abstract

Soft tissue balance is important for good clinical outcome and good stability after TKA. Ligament balancer is one of the devices to measure the soft tissue balance. The objective of this study is to clarify the effect of the difference in the rotational position of the TKA balancer on medial and lateral soft tissue balance.

Materials and Methods

This study included with 50 knees of the 43 patients (6 males, 37 females) who had undergone TKA with ADLER GENUS system from March 2015 to January 2017. The mean age was 71.1±8.1 years. All patients were diagnosed with medial osteoarthritis of the knee. All implants was cruciate substituted type (CS type) and mobile bearing insert.

We developed a new ligament balancer that could be fixed to the tibia with keel and insert trial could be rotated on the paddle. We measured the medial and lateral soft tissue balance during TKA with the new balancer. The A-P position of the balancer was fixed on tibia in parallel with the Akagi line (A-P axis 0 group) and 20 degrees internal rotation (IR group) and 20 degrees external rotation (ER group). Soft tissue balance was measured in extension and 90 degrees of knee flexion on each rotational position.

Results

The mean angle of valgus and varus in IR group, 0 group and ER group were 4.6±2.2 degrees varus, 1.9±1.6 degrees varus and 0.4±2.4 degrees varus respectively in extension, and 5.5±3.0 degrees varus, 2.1±2.2 degrees varus and 0.7±3.2 degrees varus respectively in 90 degrees of knee flexion. There were significant differences between three groups in extension (p<0.0001) and flexion (p<0.0001). In other words, when the balancer was fixed on tibia with internal rotation against the Akagi line, the soft tissue balance indicated medial tightness. Conversely, when the balancer was fixed on tibia with external rotation against the Akagi line, the soft tissue balance showed lateral tightness.

The insert trial significantly rotated to opposite side against the position of balancer fixed.

Discussion

Ligament balancer is used to be inserted between femur and tibia. If balancer is not fixed on tibia, it may rotated and translated during measurement. That movement made impossible to measure the correct soft tissue balance. We created a new balancer that could be fixed to the tibia with keel and the insert trial could be rotated on the paddle. Furthermore, it is possible to measure the soft tissue balance after installation of the femoral trial. As a result, it is possible to check the real soft tissue balance after implantation.

In conclusion, direction of A-P axis of the ligament balancer is important to measure the correct soft tissue balance in TKA. This result means that the implantation on excessive rotation of the tibial component affects on the medial and lateral soft tissue balance in fixed type TKA. In mobile type TKA, it is possible to substitute if it is within the possible range of rotation by rotational mobile insert.