header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ROTATION IN TOTAL KNEE ARTHROPLASTY: ARE WE ACCURATE?

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 1.



Abstract

Background

Accurate implant positioning is of supreme importance in total knee replacement (TKR). The rotational profile of the femoral and tibial components can affect outcomes, and the aim is to achieve coronal conformity with parallelism between the medio-lateral axes of the femur and tibia.

Aims

The aim of this study is to determine the accuracy of implant rotation in total knee replacement.

Methods

Intra-operatively, the trans-epicondylar axis of the femur (TEA) and Whiteside's line were used as the reference points, aiming to externally rotate the femoral component by 1 degree. The medial third of the tibial tuberosity was used as the anatomical reference point, aiming to reproduce the rotation of the native tibia.

Pre-and post-operative CT scans were reviewed. The difference in femoral rotation was calculated by determining the femoral posterior condylar axis (PCA) of the native femur pre-operatively and the implant post-operatively. Tibial rotational difference was calculated between the native tibial posterior condylar axis and tibial baseplate.

Results

Pre and post-operative CT scans of 41 knees in 31 patients were analysed. All surgeries were carried out by a single surgeon using the same implant.

The mean difference in rotation of the femur post-operatively was 1.2 degrees external rotation (ER), range −4.7 to 6.9 degrees ER. 83% of femoral components were within 3 degrees of the target rotation.

Mean difference in tibial rotation was −3.8 degrees ER, range −11.1 to 12.4 ER. Only 39% of tibial components were within 3 degrees of the target rotation.

A line perpendicular to the midpoint of the tibial PCA was actually medial to the tibial tubercle in 33 knees, and only corresponded to the medial 1/3 of the tibial tubercle in 8 of 41 knees.

Conclusions

Femoral component rotation is seen to be more accurate than tibial in this group. It may be that the anatomical landmarks used intra-operatively to judge tibial rotation are more difficult to accurately identify. Posterior landmarks are difficult to locate in vivo. This study would suggest that using the anterior anatomical landmark of the medial 1/3 of the tibial tubercle does not allow accurate reproduction of tibial rotation in total knee replacement.


Email: