header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

SMALL DATA FORECASTING OF LENGTH OF STAY AFTER PRIMARY TOTAL HIP ARTHROPLASTY IN THE VALUE-BASED PAYMENT ERA: VALIDATION OF A PREDICTIVE BIG DATA MACHINE LEARNING MODEL

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 1.



Abstract

Background

The advent of value-based conscientiousness and rapid-recovery discharge pathways presents surgeons, hospitals, and payers with the challenge of providing the same total hip arthroplasty episode of care in the safest and most economic fashion for the same fee, despite patient differences. Various predictive analytic techniques have been applied to medical risk models, such as sepsis risk scores, but none have been applied or validated to the elective primary total hip arthroplasty (THA) setting for key payment-based metrics. The objective of this study was to develop and validate a predictive machine learning model using preoperative patient demographics for length of stay (LOS) after primary THA as the first step in identifying a patient-specific payment model (PSPM).

Methods

Using 229,945 patients undergoing primary THA for osteoarthritis from an administrative database between 2009– 16, we created a naïve Bayesian model to forecast LOS after primary THA using a 3:2 split in which 60% of the available patient data “built” the algorithm and the remaining 40% of patients were used for “testing.” This process was iterated five times for algorithm refinement, and model performance was determined using the area under the receiver operating characteristic curve (AUC), percent accuracy, and positive predictive value. LOS was either grouped as 1–5 days or greater than 5 days.

Results

The machine learning model algorithm required age, race, gender, and two comorbidity scores (“risk of illness” and “risk of morbidity”) to demonstrate excellent validity, reliability, and responsiveness with an AUC of 0.87 after five iterations. Hospital stays of greater than 5 days for THA were most associated with increased risk of illness and risk of comorbidity scores during admission compared to 1–5 days of stay.

Conclusions

Our machine learning model derived from administrative big data demonstrated excellent validity, reliability, and responsiveness after primary THA while accurately predicting LOS and identifying two comorbidity scores as key value-based metrics. Predictive data has the potential to engender a risk-based PSPM prior to primary THA and other elective orthopaedic procedures.


Email: