header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

UNDERSTANDING THE PATHOLOGICAL CHANGES OF VARUS KNEE ON MRI CAN LEAD TO A BETTER ALGORITHM TO BALANCE THE KNEE

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 1.



Abstract

Introduction

Most of the algorithm available today to balance varus knee is based on a surgeon's hands-on experience without full understanding of pathological anatomy of varus knee. The high-resolution MRI allows us to recognize the anatomical details of the posteromedial corner and the changes of the soft tissue associated with the osteoarthritis and varus deformity. We have in this study, reviewed 60 cases of severe varus knee scheduled for TKR and compared it to normal MRI and those MRI were evaluated and read by a musculoskeletal radiologist. We have documented clearly the changes that happens in soft tissue, leading to tight medial compartment. We will also show multiple short intra-operative video confirming that MRI findings.

Material & method

We have retrospectively reviewed the MRI on 60 patients with advanced osteoarthritis varus knee. We also reviewed 20 MRI for a normal knee matched for age. We evaluated the posteromedial complex and MCL in sagittal PD-weighted VISTA to check the alignment of the MCL and posteromedial complex and the associate MCL bowing and deformity that could happen in osteoarthritis knee. We have measured the thickness of the posteromedial complex and the posterior medial bowing of the superficial MCL and the involvement of the posterior oblique ligament in those patients. To measure the posterior bowing of the MCL, a line was drawn through the posterior aspect of both menisci and we measured the distance between the posterior edge of MCL to that line in actual image. To measure the thickness of the posteromedial complex, we measured it at two areas in the posterior medial corner posteriorly at the level of the medial meniscus.

Measuring the medial bowing of the MCL was done by a line drawn through the medial edge of the femoral condyle and the tibial condyle at the level of the medial meniscus to the inner aspect of the MCL. The normal distance between the posterior aspects of the MCL to the posterior meniscus line was approximately measured 2 cm. in average.

Results

We were able to recognize and measure the medial deviation of MCL in all arthritic knees due to the deformity and the effect of the medial margin osteophyte and medial extrusion of the meniscus. Thickening of posteromedial complex was recognized in the majority of the cases with prominent thickening seen in 50/60 knees with average thickness measuring approximately 1.2 cm due to the synovial thickening, adhesions, granulation tissue, degenerated medial meniscus, and involvement of the posterior oblique ligament and the capsular branch of the semimembranosus tendon, as well as the oblique popliteal ligament. The involvement of posterior oblique ligament were seen in majority of the cases. In 55 cases we have showed a heterogeneous appearance of the ligament and loss of normal signal within the postero medial complex and we have documented that the oblique ligament will cause the posterior bowing of the MCL. The medial bowing of the MCL is also correlated to the severity of the varus deformity with an average distance to the normal medial line of the medial meniscus measuring approximately 1.1 cm

Discussion

Our study shows that the changes affecting the superficial MCL is likely to be secondary to the obvious changes involving the posteromedial complex and to the marginal osteophyte as well as the extrusion of the medial meniscus. Also, we have confirmed that there are deforming structures such as the oblique ligament with adhesion and thickening with all the posterior medial complex. Those changes clearly caused the posterior bowing to the superficial MCL without an actual shortening of the ligament. The scarring tissue in the posteromedial corner and the adhesion is acting as a soft phyte tensioning and deforming the ligament and the posterior capsule. The oblique ligament act as a deforming forces forcing the superficial MCL to bow posteriorly. The lengths of the superficial MCL stayed the same.

Conclusion

The conventional wisdom of releasing the distal attachment of the superficial medial MCL to balance knee has to be a challenge based on our MRI finding. Releasing the superficial MCL can sometimes lead to a major instability of the knee requiring a more constrained implant. Our MRI assessment clearly showed that the Superficial MCL is deformed because of posterior bowing and medial bowing and considerable thickening of the posteromedial corner, as well as the accompanying osteophyte. We believe that clearing the superficial MCL and excising those thickened scar tissue in the posterior medial corner will enable us to balance the knee without creating instability Conclusion: The conventional wisdom of releasing the distal attachment of the superficial medial MCL to balance knee has to be a challenge based on our MRI finding. Releasing the superficial MCL can sometimes lead to a major instability of the knee requiring a more constrained implant. Our MRI assessment clearly showed that the Superficial MCL is deformed because of posterior bowing and medial bowing and considerable thickening of the posteromedial corner, as well as the accompanying osteophyte. We believe that clearing the superficial MCL and excising those thickened scar tissue in the posterior medial corner will enable us to balance the knee without creating instability.


Email: